1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
|
// (C) Copyright Jeremy Murphy 2015.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/config.hpp>
#define BOOST_TEST_MAIN
#include <boost/array.hpp>
#include <boost/math/tools/polynomial.hpp>
#ifndef BOOST_MATH_STANDALONE
#include <boost/integer/common_factor_rt.hpp>
#endif
#include <boost/mpl/list.hpp>
#include <boost/mpl/joint_view.hpp>
#include <boost/test/unit_test.hpp>
#ifndef BOOST_MATH_STANDALONE
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
#endif
#include <utility>
#include <array>
#include <list>
#if !defined(TEST1) && !defined(TEST2) && !defined(TEST3)
# define TEST1
# define TEST2
# define TEST3
#endif
using namespace boost::math;
using boost::integer::gcd;
using namespace boost::math::tools;
using namespace std;
using boost::integer::gcd_detail::Euclid_gcd;
using boost::math::tools::subresultant_gcd;
template <typename T>
struct answer
{
answer(std::pair< polynomial<T>, polynomial<T> > const &x) :
quotient(x.first), remainder(x.second) {}
polynomial<T> quotient;
polynomial<T> remainder;
};
std::array<double, 4> const d3a = {{10, -6, -4, 3}};
std::array<double, 4> const d3b = {{-7, 5, 6, 1}};
std::array<double, 2> const d1a = {{-2, 1}};
std::array<double, 1> const d0a = {{6}};
std::array<double, 2> const d0a1 = {{0, 6}};
std::array<double, 6> const d0a5 = {{0, 0, 0, 0, 0, 6}};
std::array<int, 9> const d8 = {{-5, 2, 8, -3, -3, 0, 1, 0, 1}};
std::array<int, 9> const d8b = {{0, 2, 8, -3, -3, 0, 1, 0, 1}};
BOOST_AUTO_TEST_CASE(trivial)
{
/* We have one empty test case here, so that there is always something for Boost.Test to do even if the tests below are #if'ed out */
}
#ifdef TEST1
std::array<double, 4> const d3c = {{10.0/3.0, -2.0, -4.0/3.0, 1.0}};
std::array<double, 3> const d2a = {{-2, 2, 3}};
std::array<double, 3> const d2b = {{-7, 5, 6}};
std::array<double, 3> const d2c = {{31, -21, -22}};
std::array<double, 1> const d0b = {{3}};
std::array<int, 7> const d6 = {{21, -9, -4, 0, 5, 0, 3}};
std::array<int, 3> const d2 = {{-6, 0, 9}};
std::array<int, 6> const d5 = {{-9, 0, 3, 0, -15}};
BOOST_AUTO_TEST_CASE( test_construction )
{
polynomial<double> const a(d3a.begin(), d3a.end());
polynomial<double> const b(d3a.begin(), 3);
BOOST_CHECK_EQUAL(a, b);
}
#ifdef BOOST_MATH_HAS_IS_CONST_ITERABLE
#include <list>
#include <array>
BOOST_AUTO_TEST_CASE(test_range_construction)
{
std::list<double> l{ 1, 2, 3, 4 };
std::array<double, 4> a{ 3, 4, 5, 6 };
polynomial<double> p1{ 1, 2, 3, 4 };
polynomial<double> p2{ 3, 4, 5, 6 };
polynomial<double> p3(l);
polynomial<double> p4(a);
BOOST_CHECK_EQUAL(p1, p3);
BOOST_CHECK_EQUAL(p2, p4);
}
#endif
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) && !BOOST_WORKAROUND(BOOST_GCC_VERSION, < 40500)
BOOST_AUTO_TEST_CASE( test_initializer_list_construction )
{
polynomial<double> a(begin(d3a), end(d3a));
polynomial<double> b = {10, -6, -4, 3};
polynomial<double> c{10, -6, -4, 3};
polynomial<double> d{10, -6, -4, 3, 0, 0};
BOOST_CHECK_EQUAL(a, b);
BOOST_CHECK_EQUAL(b, c);
BOOST_CHECK_EQUAL(d.degree(), 3u);
}
BOOST_AUTO_TEST_CASE( test_initializer_list_assignment )
{
polynomial<double> a(begin(d3a), end(d3a));
polynomial<double> b;
b = {10, -6, -4, 3, 0, 0};
BOOST_CHECK_EQUAL(b.degree(), 3u);
BOOST_CHECK_EQUAL(a, b);
}
#endif
BOOST_AUTO_TEST_CASE( test_degree )
{
polynomial<double> const zero;
polynomial<double> const a(d3a.begin(), d3a.end());
BOOST_CHECK_THROW(zero.degree(), std::logic_error);
BOOST_CHECK_EQUAL(a.degree(), 3u);
}
BOOST_AUTO_TEST_CASE( test_division_over_field )
{
polynomial<double> const a(d3a.begin(), d3a.end());
polynomial<double> const b(d1a.begin(), d1a.end());
polynomial<double> const q(d2a.begin(), d2a.end());
polynomial<double> const r(d0a.begin(), d0a.end());
polynomial<double> const c(d3b.begin(), d3b.end());
polynomial<double> const d(d2b.begin(), d2b.end());
polynomial<double> const e(d2c.begin(), d2c.end());
polynomial<double> const f(d0b.begin(), d0b.end());
polynomial<double> const g(d3c.begin(), d3c.end());
polynomial<double> const zero;
polynomial<double> const one(1.0);
answer<double> result = quotient_remainder(a, b);
BOOST_CHECK_EQUAL(result.quotient, q);
BOOST_CHECK_EQUAL(result.remainder, r);
BOOST_CHECK_EQUAL(a, q * b + r); // Sanity check.
result = quotient_remainder(a, c);
BOOST_CHECK_EQUAL(result.quotient, f);
BOOST_CHECK_EQUAL(result.remainder, e);
BOOST_CHECK_EQUAL(a, f * c + e); // Sanity check.
result = quotient_remainder(a, f);
BOOST_CHECK_EQUAL(result.quotient, g);
BOOST_CHECK_EQUAL(result.remainder, zero);
BOOST_CHECK_EQUAL(a, g * f + zero); // Sanity check.
// Check that division by a regular number gives the same result.
BOOST_CHECK_EQUAL(a / 3.0, g);
BOOST_CHECK_EQUAL(a % 3.0, zero);
// Sanity checks.
BOOST_CHECK_EQUAL(a / a, one);
BOOST_CHECK_EQUAL(a % a, zero);
// BOOST_CHECK_EQUAL(zero / zero, zero); // TODO
}
BOOST_AUTO_TEST_CASE( test_division_over_ufd )
{
polynomial<int> const zero;
polynomial<int> const one(1);
polynomial<int> const aa(d8.begin(), d8.end());
polynomial<int> const bb(d6.begin(), d6.end());
polynomial<int> const q(d2.begin(), d2.end());
polynomial<int> const r(d5.begin(), d5.end());
answer<int> result = quotient_remainder(aa, bb);
BOOST_CHECK_EQUAL(result.quotient, q);
BOOST_CHECK_EQUAL(result.remainder, r);
// Sanity checks.
BOOST_CHECK_EQUAL(aa / aa, one);
BOOST_CHECK_EQUAL(aa % aa, zero);
}
#endif
template <typename T>
struct FM2GP_Ex_8_3__1
{
polynomial<T> x;
polynomial<T> y;
polynomial<T> z;
FM2GP_Ex_8_3__1()
{
std::array<T, 5> const x_data = {{105, 278, -88, -56, 16}};
std::array<T, 5> const y_data = {{70, 232, -44, -64, 16}};
std::array<T, 3> const z_data = {{35, -24, 4}};
x = polynomial<T>(x_data.begin(), x_data.end());
y = polynomial<T>(y_data.begin(), y_data.end());
z = polynomial<T>(z_data.begin(), z_data.end());
}
};
template <typename T>
struct FM2GP_Ex_8_3__2
{
polynomial<T> x;
polynomial<T> y;
polynomial<T> z;
FM2GP_Ex_8_3__2()
{
std::array<T, 5> const x_data = {{1, -6, -8, 6, 7}};
std::array<T, 5> const y_data = {{1, -5, -2, 15, 11}};
std::array<T, 3> const z_data = {{1, 2, 1}};
x = polynomial<T>(x_data.begin(), x_data.end());
y = polynomial<T>(y_data.begin(), y_data.end());
z = polynomial<T>(z_data.begin(), z_data.end());
}
};
template <typename T>
struct FM2GP_mixed
{
polynomial<T> x;
polynomial<T> y;
polynomial<T> z;
FM2GP_mixed()
{
std::array<T, 4> const x_data = {{-2.2, -3.3, 0, 1}};
std::array<T, 3> const y_data = {{-4.4, 0, 1}};
std::array<T, 2> const z_data= {{-2, 1}};
x = polynomial<T>(x_data.begin(), x_data.end());
y = polynomial<T>(y_data.begin(), y_data.end());
z = polynomial<T>(z_data.begin(), z_data.end());
}
};
template <typename T>
struct FM2GP_trivial
{
polynomial<T> x;
polynomial<T> y;
polynomial<T> z;
FM2GP_trivial()
{
std::array<T, 4> const x_data = {{-2, -3, 0, 1}};
std::array<T, 3> const y_data = {{-4, 0, 1}};
std::array<T, 2> const z_data= {{-2, 1}};
x = polynomial<T>(x_data.begin(), x_data.end());
y = polynomial<T>(y_data.begin(), y_data.end());
z = polynomial<T>(z_data.begin(), z_data.end());
}
};
// Sanity checks to make sure I didn't break it.
#ifdef TEST1
typedef boost::mpl::list<signed char, short, int, long> integral_test_types;
typedef boost::mpl::list<int, long> large_integral_test_types;
typedef boost::mpl::list<> mp_integral_test_types;
#elif defined(TEST2)
typedef boost::mpl::list<
#if !BOOST_WORKAROUND(BOOST_MSVC, <= 1500) && !defined(BOOST_MATH_STANDALONE)
boost::multiprecision::cpp_int
#endif
> integral_test_types;
typedef integral_test_types large_integral_test_types;
typedef large_integral_test_types mp_integral_test_types;
#elif defined(TEST3)
typedef boost::mpl::list<> large_integral_test_types;
typedef boost::mpl::list<> integral_test_types;
typedef large_integral_test_types mp_integral_test_types;
#endif
#ifdef TEST1
typedef boost::mpl::list<double, long double> non_integral_test_types;
#elif defined(TEST2)
typedef boost::mpl::list<
#if !BOOST_WORKAROUND(BOOST_MSVC, <= 1500) && !defined(BOOST_MATH_STANDALONE)
boost::multiprecision::cpp_rational
#endif
> non_integral_test_types;
#elif defined(TEST3)
typedef boost::mpl::list<
#if !BOOST_WORKAROUND(BOOST_MSVC, <= 1500) && !defined(BOOST_MATH_STANDALONE)
boost::multiprecision::cpp_bin_float_single, boost::multiprecision::cpp_dec_float_50
#endif
> non_integral_test_types;
#endif
typedef boost::mpl::joint_view<integral_test_types, non_integral_test_types> all_test_types;
template <typename T>
void normalize(polynomial<T> &p)
{
if (leading_coefficient(p) < T(0))
std::transform(p.data().begin(), p.data().end(), p.data().begin(), std::negate<T>());
}
/**
* Note that we do not expect 'pure' gcd algorithms to normalize the result.
* However, the usual public interface function gcd() will do that.
*/
BOOST_AUTO_TEST_SUITE(test_subresultant_gcd)
// This test is just to show that gcd<polynomial<T>>(u, v) is defined (and works) when T is integral and multiprecision.
BOOST_FIXTURE_TEST_CASE_TEMPLATE( gcd_interface, T, mp_integral_test_types, FM2GP_Ex_8_3__1<T> )
{
typedef FM2GP_Ex_8_3__1<T> fixture_type;
polynomial<T> w;
w = gcd(fixture_type::x, fixture_type::y);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
w = gcd(fixture_type::y, fixture_type::x);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
}
// This test is just to show that gcd<polynomial<T>>(u, v) is defined (and works) when T is floating point.
BOOST_FIXTURE_TEST_CASE_TEMPLATE( gcd_float_interface, T, non_integral_test_types, FM2GP_Ex_8_3__1<T> )
{
typedef FM2GP_Ex_8_3__1<T> fixture_type;
polynomial<T> w;
w = gcd(fixture_type::x, fixture_type::y);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
w = gcd(fixture_type::y, fixture_type::x);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
}
// The following tests call subresultant_gcd explicitly to remove any ambiguity
// and to permit testing on single-precision integral types.
BOOST_FIXTURE_TEST_CASE_TEMPLATE( Ex_8_3__1, T, large_integral_test_types, FM2GP_Ex_8_3__1<T> )
{
typedef FM2GP_Ex_8_3__1<T> fixture_type;
polynomial<T> w;
w = subresultant_gcd(fixture_type::x, fixture_type::y);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
w = subresultant_gcd(fixture_type::y, fixture_type::x);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
}
BOOST_FIXTURE_TEST_CASE_TEMPLATE( Ex_8_3__2, T, large_integral_test_types, FM2GP_Ex_8_3__2<T> )
{
typedef FM2GP_Ex_8_3__2<T> fixture_type;
polynomial<T> w;
w = subresultant_gcd(fixture_type::x, fixture_type::y);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
w = subresultant_gcd(fixture_type::y, fixture_type::x);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
}
BOOST_FIXTURE_TEST_CASE_TEMPLATE( trivial_int, T, large_integral_test_types, FM2GP_trivial<T> )
{
typedef FM2GP_trivial<T> fixture_type;
polynomial<T> w;
w = subresultant_gcd(fixture_type::x, fixture_type::y);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
w = subresultant_gcd(fixture_type::y, fixture_type::x);
normalize(w);
BOOST_CHECK_EQUAL(w, fixture_type::z);
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_CASE_TEMPLATE( test_addition, T, all_test_types )
{
polynomial<T> const a(d3a.begin(), d3a.end());
polynomial<T> const b(d1a.begin(), d1a.end());
polynomial<T> const zero;
polynomial<T> result = a + b; // different degree
std::array<T, 4> tmp = {{8, -5, -4, 3}};
polynomial<T> expected(tmp.begin(), tmp.end());
BOOST_CHECK_EQUAL(result, expected);
BOOST_CHECK_EQUAL(a + zero, a);
BOOST_CHECK_EQUAL(a + b, b + a);
}
BOOST_AUTO_TEST_CASE_TEMPLATE( test_subtraction, T, all_test_types )
{
polynomial<T> const a(d3a.begin(), d3a.end());
polynomial<T> const zero;
BOOST_CHECK_EQUAL(a - T(0), a);
BOOST_CHECK_EQUAL(T(0) - a, -a);
BOOST_CHECK_EQUAL(a - zero, a);
BOOST_CHECK_EQUAL(zero - a, -a);
BOOST_CHECK_EQUAL(a - a, zero);
}
BOOST_AUTO_TEST_CASE_TEMPLATE( test_multiplication, T, all_test_types )
{
polynomial<T> const a(d3a.begin(), d3a.end());
polynomial<T> const b(d1a.begin(), d1a.end());
polynomial<T> const zero;
std::array<T, 7> const d3a_sq = {{100, -120, -44, 108, -20, -24, 9}};
polynomial<T> const a_sq(d3a_sq.begin(), d3a_sq.end());
BOOST_CHECK_EQUAL(a * T(0), zero);
BOOST_CHECK_EQUAL(a * zero, zero);
BOOST_CHECK_EQUAL(zero * T(0), zero);
BOOST_CHECK_EQUAL(zero * zero, zero);
BOOST_CHECK_EQUAL(a * b, b * a);
polynomial<T> aa(a);
aa *= aa;
BOOST_CHECK_EQUAL(aa, a_sq);
BOOST_CHECK_EQUAL(aa, a * a);
}
BOOST_AUTO_TEST_CASE_TEMPLATE( test_arithmetic_relations, T, all_test_types )
{
polynomial<T> const a(d8b.begin(), d8b.end());
polynomial<T> const b(d1a.begin(), d1a.end());
BOOST_CHECK_EQUAL(a * T(2), a + a);
BOOST_CHECK_EQUAL(a - b, -b + a);
BOOST_CHECK_EQUAL(a, (a * a) / a);
BOOST_CHECK_EQUAL(a, (a / a) * a);
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_non_integral_arithmetic_relations, T, non_integral_test_types )
{
polynomial<T> const a(d8b.begin(), d8b.end());
polynomial<T> const b(d1a.begin(), d1a.end());
BOOST_CHECK_EQUAL(a * T(0.5), a / T(2));
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_cont_and_pp, T, integral_test_types)
{
std::array<polynomial<T>, 4> const q={{
polynomial<T>(d8.begin(), d8.end()),
polynomial<T>(d8b.begin(), d8b.end()),
polynomial<T>(d3a.begin(), d3a.end()),
polynomial<T>(d3b.begin(), d3b.end())
}};
for (std::size_t i = 0; i < q.size(); i++)
{
BOOST_CHECK_EQUAL(q[i], content(q[i]) * primitive_part(q[i]));
BOOST_CHECK_EQUAL(primitive_part(q[i]), primitive_part(q[i], content(q[i])));
}
polynomial<T> const zero;
BOOST_CHECK_EQUAL(primitive_part(zero), zero);
BOOST_CHECK_EQUAL(content(zero), T(0));
}
BOOST_AUTO_TEST_CASE_TEMPLATE( test_self_multiply_assign, T, all_test_types )
{
polynomial<T> a(d3a.begin(), d3a.end());
polynomial<T> const b(a);
std::array<double, 7> const d3a_sq = {{100, -120, -44, 108, -20, -24, 9}};
polynomial<T> const asq(d3a_sq.begin(), d3a_sq.end());
a *= a;
BOOST_CHECK_EQUAL(a, b*b);
BOOST_CHECK_EQUAL(a, asq);
a *= a;
BOOST_CHECK_EQUAL(a, b*b*b*b);
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_right_shift, T, all_test_types )
{
polynomial<T> a(d8b.begin(), d8b.end());
polynomial<T> const aa(a);
polynomial<T> const b(d8b.begin() + 1, d8b.end());
polynomial<T> const c(d8b.begin() + 5, d8b.end());
a >>= 0u;
BOOST_CHECK_EQUAL(a, aa);
a >>= 1u;
BOOST_CHECK_EQUAL(a, b);
a = a >> 4u;
BOOST_CHECK_EQUAL(a, c);
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_left_shift, T, all_test_types )
{
polynomial<T> a(d0a.begin(), d0a.end());
polynomial<T> const aa(a);
polynomial<T> const b(d0a1.begin(), d0a1.end());
polynomial<T> const c(d0a5.begin(), d0a5.end());
a <<= 0u;
BOOST_CHECK_EQUAL(a, aa);
a <<= 1u;
BOOST_CHECK_EQUAL(a, b);
a = a << 4u;
BOOST_CHECK_EQUAL(a, c);
polynomial<T> zero;
// Multiplying zero by x should still be zero.
zero <<= 1u;
BOOST_CHECK_EQUAL(zero, zero_element(multiplies< polynomial<T> >()));
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_odd_even, T, all_test_types)
{
polynomial<T> const zero;
BOOST_CHECK_EQUAL(odd(zero), false);
BOOST_CHECK_EQUAL(even(zero), true);
polynomial<T> const a(d0a.begin(), d0a.end());
BOOST_CHECK_EQUAL(odd(a), true);
BOOST_CHECK_EQUAL(even(a), false);
polynomial<T> const b(d0a1.begin(), d0a1.end());
BOOST_CHECK_EQUAL(odd(b), false);
BOOST_CHECK_EQUAL(even(b), true);
}
// NOTE: Slightly unexpected: this unit test passes even when T = char.
BOOST_AUTO_TEST_CASE_TEMPLATE( test_pow, T, all_test_types )
{
if (std::numeric_limits<T>::digits < 32)
return; // Invokes undefined behaviour
polynomial<T> a(d3a.begin(), d3a.end());
polynomial<T> const one(T(1));
std::array<double, 7> const d3a_sqr = {{100, -120, -44, 108, -20, -24, 9}};
std::array<double, 10> const d3a_cub =
{{1000, -1800, -120, 2124, -1032, -684, 638, -18, -108, 27}};
polynomial<T> const asqr(d3a_sqr.begin(), d3a_sqr.end());
polynomial<T> const acub(d3a_cub.begin(), d3a_cub.end());
BOOST_CHECK_EQUAL(pow(a, 0), one);
BOOST_CHECK_EQUAL(pow(a, 1), a);
BOOST_CHECK_EQUAL(pow(a, 2), asqr);
BOOST_CHECK_EQUAL(pow(a, 3), acub);
BOOST_CHECK_EQUAL(pow(a, 4), pow(asqr, 2));
BOOST_CHECK_EQUAL(pow(a, 5), asqr * acub);
BOOST_CHECK_EQUAL(pow(a, 6), pow(acub, 2));
BOOST_CHECK_EQUAL(pow(a, 7), acub * acub * a);
BOOST_CHECK_THROW(pow(a, -1), std::domain_error);
BOOST_CHECK_EQUAL(pow(one, 137), one);
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_bool, T, all_test_types)
{
polynomial<T> const zero;
polynomial<T> const a(d0a.begin(), d0a.end());
BOOST_CHECK_EQUAL(bool(zero), false);
BOOST_CHECK_EQUAL(bool(a), true);
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_set_zero, T, all_test_types)
{
polynomial<T> const zero;
polynomial<T> a(d0a.begin(), d0a.end());
a.set_zero();
BOOST_CHECK_EQUAL(a, zero);
a.set_zero(); // Ensure that setting zero to zero is a no-op.
BOOST_CHECK_EQUAL(a, zero);
}
BOOST_AUTO_TEST_CASE_TEMPLATE(test_leading_coefficient, T, all_test_types)
{
polynomial<T> const zero;
BOOST_CHECK_EQUAL(leading_coefficient(zero), T(0));
polynomial<T> a(d0a.begin(), d0a.end());
BOOST_CHECK_EQUAL(leading_coefficient(a), T(d0a.back()));
}
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_UNIFIED_INITIALIZATION_SYNTAX)
BOOST_AUTO_TEST_CASE_TEMPLATE(test_prime, T, all_test_types)
{
std::vector<T> d{1,1,1,1,1};
polynomial<T> p(std::move(d));
polynomial<T> q = p.prime();
BOOST_CHECK_EQUAL(q(0), T(1));
for (size_t i = 0; i < q.size(); ++i)
{
BOOST_CHECK_EQUAL(q[i], i+1);
}
polynomial<T> P = p.integrate();
BOOST_CHECK_EQUAL(P(0), T(0));
for (size_t i = 1; i < P.size(); ++i)
{
BOOST_CHECK_EQUAL(P[i], 1/static_cast<T>(i));
}
polynomial<T> empty;
q = empty.prime();
BOOST_CHECK_EQUAL(q.size(), 0);
}
#endif
|