1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
// Copyright John Maddock 2006.
// Copyright Matt Borland 2023.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// test_rayleigh.cpp
#ifdef _MSC_VER
# pragma warning(disable: 4127) // conditional expression is constant.
# pragma warning(disable: 4100) // unreferenced formal parameter.
#endif
#include <boost/math/tools/config.hpp>
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#endif
#include <boost/math/distributions/rayleigh.hpp>
using boost::math::rayleigh_distribution;
#include "../include_private/boost/math/tools/test.hpp"
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // Boost.Test
#include <boost/test/tools/floating_point_comparison.hpp>
#include "test_out_of_range.hpp"
#include <iostream>
using std::cout;
using std::endl;
using std::setprecision;
#include <cmath>
using std::log;
#include <type_traits>
template <class RealType>
void test_spot(RealType s, RealType x, RealType p, RealType q, RealType tolerance)
{
RealType logtolerance = tolerance;
#ifndef BOOST_MATH_HAS_GPU_SUPPORT
BOOST_IF_CONSTEXPR (std::is_same<RealType, long double>::value ||
std::is_same<RealType, boost::math::concepts::real_concept>::value)
{
logtolerance *= 100;
}
#endif
BOOST_CHECK_CLOSE(
::boost::math::cdf(
rayleigh_distribution<RealType>(s),
x),
p,
tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(rayleigh_distribution<RealType>(s),
x)),
q,
tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::logcdf(
rayleigh_distribution<RealType>(s),
x),
log(p),
tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::logcdf(
complement(rayleigh_distribution<RealType>(s),
x)),
log(q),
tolerance); // %
// Special extra tests for p and q near to unity.
if(p < 0.999)
{
BOOST_CHECK_CLOSE(
::boost::math::quantile(
rayleigh_distribution<RealType>(s),
p),
x,
tolerance); // %
}
if(q < 0.999)
{
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(rayleigh_distribution<RealType>(s),
q)),
x,
tolerance); // %
}
if(std::numeric_limits<RealType>::has_infinity)
{
RealType inf = std::numeric_limits<RealType>::infinity();
BOOST_CHECK_EQUAL(pdf(rayleigh_distribution<RealType>(s), inf), 0);
BOOST_CHECK_EQUAL(cdf(rayleigh_distribution<RealType>(s), inf), 1);
BOOST_CHECK_EQUAL(cdf(complement(rayleigh_distribution<RealType>(s), inf)), 0);
}
} // void test_spot
template <class RealType>
void test_spots(RealType T)
{
using namespace std; // ADL of std names.
// Basic sanity checks.
// 50 eps as a percentage, up to a maximum of double precision
// (that's the limit of our test data: obtained by punching
// numbers into a calculator).
RealType tolerance = (std::max)(
static_cast<RealType>(boost::math::tools::epsilon<double>()),
boost::math::tools::epsilon<RealType>());
tolerance *= 10 * 100; // 10 eps as a percent
cout << "Tolerance for type " << typeid(T).name() << " is " << tolerance << " %" << endl;
using namespace boost::math::constants;
// Things that are errors:
rayleigh_distribution<RealType> dist(0.5);
check_out_of_range<rayleigh_distribution<RealType> >(1);
BOOST_MATH_CHECK_THROW(
quantile(dist,
RealType(1.)), // quantile unity should overflow.
std::overflow_error);
BOOST_MATH_CHECK_THROW(
quantile(complement(dist,
RealType(0.))), // quantile complement zero should overflow.
std::overflow_error);
BOOST_MATH_CHECK_THROW(
pdf(dist, RealType(-1)), // Bad negative x.
std::domain_error);
BOOST_MATH_CHECK_THROW(
cdf(dist, RealType(-1)), // Bad negative x.
std::domain_error);
BOOST_MATH_CHECK_THROW(
cdf(rayleigh_distribution<RealType>(-1), // bad sigma < 0
RealType(1)),
std::domain_error);
BOOST_MATH_CHECK_THROW(
cdf(rayleigh_distribution<RealType>(0), // bad sigma == 0
RealType(1)),
std::domain_error);
BOOST_MATH_CHECK_THROW(
quantile(dist, RealType(-1)), // negative quantile probability.
std::domain_error);
BOOST_MATH_CHECK_THROW(
quantile(dist, RealType(2)), // > unity quantile probability.
std::domain_error);
test_spot(
static_cast<RealType>(1.L), // sigma
static_cast<RealType>(1.L), // x
static_cast<RealType>(1 - exp_minus_half<RealType>()), // p
static_cast<RealType>(exp_minus_half<RealType>()), // q
tolerance);
test_spot(
static_cast<RealType>(0.5L), // sigma
static_cast<RealType>(0.5L), // x
static_cast<RealType>(1 - exp_minus_half<RealType>()), // p
static_cast<RealType>(exp_minus_half<RealType>()), //q
tolerance);
test_spot(
static_cast<RealType>(3.L), // sigma
static_cast<RealType>(3.L), // x
static_cast<RealType>(1 - exp_minus_half<RealType>()), // p
static_cast<RealType>(exp_minus_half<RealType>()), //q
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::pdf(
rayleigh_distribution<RealType>(1.L),
static_cast<RealType>(1.L)), // x
static_cast<RealType>(exp_minus_half<RealType>()), // probability.
tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
rayleigh_distribution<RealType>(0.5L),
static_cast<RealType>(0.5L)), // x
static_cast<RealType>(2 * exp_minus_half<RealType>()), // probability.
tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
rayleigh_distribution<RealType>(2.L),
static_cast<RealType>(2.L)), // x
static_cast<RealType>(exp_minus_half<RealType>() /2), // probability.
tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::logpdf(
rayleigh_distribution<RealType>(1.L),
static_cast<RealType>(1.L)), // x
log(static_cast<RealType>(exp_minus_half<RealType>())), // probability.
tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::logpdf(
rayleigh_distribution<RealType>(0.5L),
static_cast<RealType>(0.5L)), // x
log(static_cast<RealType>(2 * exp_minus_half<RealType>())), // probability.
tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::logpdf(
rayleigh_distribution<RealType>(2.L),
static_cast<RealType>(2.L)), // x
log(static_cast<RealType>(exp_minus_half<RealType>() /2)), // probability.
tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::mean(
rayleigh_distribution<RealType>(1.L)),
static_cast<RealType>(root_half_pi<RealType>()),
tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::variance(
rayleigh_distribution<RealType>(root_two<RealType>())),
static_cast<RealType>(four_minus_pi<RealType>()),
tolerance * 100); // %
BOOST_CHECK_CLOSE(
::boost::math::mode(
rayleigh_distribution<RealType>(1.L)),
static_cast<RealType>(1.L),
tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::median(
rayleigh_distribution<RealType>(1.L)),
static_cast<RealType>(sqrt(log(4.L))), // sigma * sqrt(log_four)
tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::skewness(
rayleigh_distribution<RealType>(1.L)),
static_cast<RealType>(2.L * root_pi<RealType>()) * (pi<RealType>() - 3) / (pow((4 - pi<RealType>()), static_cast<RealType>(1.5L))),
tolerance * 100); // %
BOOST_CHECK_CLOSE(
::boost::math::skewness(
rayleigh_distribution<RealType>(1.L)),
static_cast<RealType>(0.63111065781893713819189935154422777984404221106391L),
tolerance * 100); // %
BOOST_CHECK_CLOSE(
::boost::math::kurtosis_excess(
rayleigh_distribution<RealType>(1.L)),
-static_cast<RealType>(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
((4 - pi<RealType>()) * (4 - pi<RealType>())),
// static_cast<RealType>(0.2450893006876380628486604106197544154170667057995L),
tolerance * 1000); // %
BOOST_CHECK_CLOSE(
::boost::math::kurtosis(
rayleigh_distribution<RealType>(1.L)),
static_cast<RealType>(3.2450893006876380628486604106197544154170667057995L),
tolerance * 100); // %
BOOST_CHECK_CLOSE(
::boost::math::kurtosis_excess(rayleigh_distribution<RealType>(2)),
::boost::math::kurtosis(rayleigh_distribution<RealType>(2)) -3,
tolerance* 100); // %
RealType expected_entropy = 1 + log(boost::math::constants::root_two<RealType>()) + boost::math::constants::euler<RealType>()/2;
BOOST_CHECK_CLOSE(
::boost::math::entropy(rayleigh_distribution<RealType>(2)),
expected_entropy,
tolerance* 100);
return;
} // template <class RealType>void test_spots(RealType)
BOOST_AUTO_TEST_CASE( test_main )
{
// Check that can generate rayleigh distribution using the two convenience methods:
boost::math::rayleigh ray1(1.); // Using typedef
rayleigh_distribution<> ray2(1.); // Using default RealType double.
using namespace boost::math::constants;
// Basic sanity-check spot values.
// Double only tests.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::pdf(
rayleigh_distribution<double>(1.),
static_cast<double>(1)), // x
static_cast<double>(exp_minus_half<double>()), // p
1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::pdf(
rayleigh_distribution<double>(0.5),
static_cast<double>(0.5)), // x
static_cast<double>(2 * exp_minus_half<double>()), // p
1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::pdf(
rayleigh_distribution<double>(2.),
static_cast<double>(2)), // x
static_cast<double>(exp_minus_half<double>() /2 ), // p
1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::logpdf(
rayleigh_distribution<double>(1.),
static_cast<double>(1)), // x
log(static_cast<double>(exp_minus_half<double>())), // p
1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::logpdf(
rayleigh_distribution<double>(0.5),
static_cast<double>(0.5)), // x
log(static_cast<double>(2 * exp_minus_half<double>())), // p
1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::logpdf(
rayleigh_distribution<double>(2.),
static_cast<double>(2)), // x
log(static_cast<double>(exp_minus_half<double>() /2 )), // p
1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(
rayleigh_distribution<double>(1.),
static_cast<double>(1)), // x
static_cast<double>(1- exp_minus_half<double>()), // p
1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(
rayleigh_distribution<double>(2.),
static_cast<double>(2)), // x
static_cast<double>(1- exp_minus_half<double>()), // p
1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(
rayleigh_distribution<double>(3.),
static_cast<double>(3)), // x
static_cast<double>(1- exp_minus_half<double>()), // p
1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(
rayleigh_distribution<double>(4.),
static_cast<double>(4)), // x
static_cast<double>(1- exp_minus_half<double>()), // p
1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(complement(
rayleigh_distribution<double>(4.),
static_cast<double>(4))), // x
static_cast<double>(exp_minus_half<double>()), // q = 1 - p
1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::quantile(
rayleigh_distribution<double>(4.),
static_cast<double>(1- exp_minus_half<double>())), // x
static_cast<double>(4), // p
1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::quantile(complement(
rayleigh_distribution<double>(4.),
static_cast<double>(exp_minus_half<double>()))), // x
static_cast<double>(4), // p
1e-15); // %
// (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_spots(0.0L); // Test long double.
#if !BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x582)) && !defined(BOOST_MATH_NO_REAL_CONCEPT_TESTS)
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::endl;
#endif
} // BOOST_AUTO_TEST_CASE( test_main )
/*
Output is:
Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_rayleigh.exe"
Running 1 test case...
Tolerance for type float is 0.000119209 %
Tolerance for type double is 2.22045e-013 %
Tolerance for type long double is 2.22045e-013 %
Tolerance for type class boost::math::concepts::real_concept is 2.22045e-013 %
*** No errors detected
*/
|