1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
// Copyright Paul A. Bristow 2012.
// Copyright John Maddock 2012.
// Copyright Benjamin Sobotta 2012
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifdef _MSC_VER
# pragma warning (disable : 4127) // conditional expression is constant.
# pragma warning (disable : 4305) // 'initializing' : truncation from 'double' to 'const float'.
# pragma warning (disable : 4310) // cast truncates constant value.
# pragma warning (disable : 4512) // assignment operator could not be generated.
#endif
//#include <pch.hpp> // include directory libs/math/src/tr1/ is needed.
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // Boost.Test
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/distributions/skew_normal.hpp>
using boost::math::skew_normal_distribution;
using boost::math::skew_normal;
#include <boost/math/tools/test.hpp>
#include <iostream>
#include <iomanip>
using std::cout;
using std::endl;
using std::setprecision;
#include <limits>
using std::numeric_limits;
#include "test_out_of_range.hpp"
template <class RealType>
void check_skew_normal(RealType mean, RealType scale, RealType shape, RealType x, RealType p, RealType q, RealType tol)
{
using boost::math::skew_normal_distribution;
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf( // Check cdf
skew_normal_distribution<RealType>(mean, scale, shape), // distribution.
x), // random variable.
p, // probability.
tol); // tolerance.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf( // Check cdf complement
complement(
skew_normal_distribution<RealType>(mean, scale, shape), // distribution.
x)), // random variable.
q, // probability complement.
tol); // %tolerance.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::quantile( // Check quantile
skew_normal_distribution<RealType>(mean, scale, shape), // distribution.
p), // probability.
x, // random variable.
tol); // tolerance.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::quantile( // Check quantile complement
complement(
skew_normal_distribution<RealType>(mean, scale, shape), // distribution.
q)), // probability complement.
x, // random variable.
tol); // tolerance.
skew_normal_distribution<RealType> dist (mean, scale, shape);
if((p < 0.999) && (q < 0.999))
{ // We can only check this if P is not too close to 1,
// so that we can guarantee Q is accurate:
BOOST_CHECK_CLOSE_FRACTION(
cdf(complement(dist, x)), q, tol); // 1 - cdf
BOOST_CHECK_CLOSE_FRACTION(
quantile(dist, p), x, tol); // quantile(cdf) = x
BOOST_CHECK_CLOSE_FRACTION(
quantile(complement(dist, q)), x, tol); // quantile(complement(1 - cdf)) = x
}
} // template <class RealType>void check_skew_normal()
template <class RealType>
void test_spots(RealType)
{
// Basic sanity checks
RealType tolerance = 1e-4f; // 1e-4 (as %)
// Check some bad parameters to the distribution,
#ifndef BOOST_NO_EXCEPTIONS
BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType> nbad1(0, 0), std::domain_error); // zero sd
BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType> nbad1(0, -1), std::domain_error); // negative sd
#else
BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType>(0, 0), std::domain_error); // zero sd
BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType>(0, -1), std::domain_error); // negative sd
#endif
// Tests on extreme values of random variate x, if has numeric_limit infinity etc.
skew_normal_distribution<RealType> N01;
if(std::numeric_limits<RealType>::has_infinity)
{
BOOST_CHECK_EQUAL(pdf(N01, +std::numeric_limits<RealType>::infinity()), 0); // x = + infinity, pdf = 0
BOOST_CHECK_EQUAL(pdf(N01, -std::numeric_limits<RealType>::infinity()), 0); // x = - infinity, pdf = 0
BOOST_CHECK_EQUAL(cdf(N01, +std::numeric_limits<RealType>::infinity()), 1); // x = + infinity, cdf = 1
BOOST_CHECK_EQUAL(cdf(N01, -std::numeric_limits<RealType>::infinity()), 0); // x = - infinity, cdf = 0
BOOST_CHECK_EQUAL(cdf(complement(N01, +std::numeric_limits<RealType>::infinity())), 0); // x = + infinity, c cdf = 0
BOOST_CHECK_EQUAL(cdf(complement(N01, -std::numeric_limits<RealType>::infinity())), 1); // x = - infinity, c cdf = 1
#ifndef BOOST_NO_EXCEPTIONS
BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType> nbad1(std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // +infinite mean
BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType> nbad1(-std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // -infinite mean
BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType> nbad1(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd
#else
BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType>(std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // +infinite mean
BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType>(-std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // -infinite mean
BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType>(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd
#endif
}
if (std::numeric_limits<RealType>::has_quiet_NaN)
{
// No longer allow x to be NaN, then these tests should throw.
BOOST_MATH_CHECK_THROW(pdf(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // x = NaN
BOOST_MATH_CHECK_THROW(cdf(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // x = NaN
BOOST_MATH_CHECK_THROW(cdf(complement(N01, +std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); // x = + infinity
BOOST_MATH_CHECK_THROW(quantile(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // p = + infinity
BOOST_MATH_CHECK_THROW(quantile(complement(N01, +std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); // p = + infinity
}
BOOST_CHECK_EQUAL(mean(N01), 0);
BOOST_CHECK_EQUAL(mode(N01), 0);
BOOST_CHECK_EQUAL(variance(N01), 1);
BOOST_CHECK_EQUAL(skewness(N01), 0);
BOOST_CHECK_EQUAL(kurtosis_excess(N01), 0);
cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
// Tests where shape = 0, so same as normal tests.
// (These might be removed later).
check_skew_normal(
static_cast<RealType>(5),
static_cast<RealType>(2),
static_cast<RealType>(0),
static_cast<RealType>(4.8),
static_cast<RealType>(0.46017),
static_cast<RealType>(1 - 0.46017),
tolerance);
check_skew_normal(
static_cast<RealType>(5),
static_cast<RealType>(2),
static_cast<RealType>(0),
static_cast<RealType>(5.2),
static_cast<RealType>(1 - 0.46017),
static_cast<RealType>(0.46017),
tolerance);
check_skew_normal(
static_cast<RealType>(5),
static_cast<RealType>(2),
static_cast<RealType>(0),
static_cast<RealType>(2.2),
static_cast<RealType>(0.08076),
static_cast<RealType>(1 - 0.08076),
tolerance);
check_skew_normal(
static_cast<RealType>(5),
static_cast<RealType>(2),
static_cast<RealType>(0),
static_cast<RealType>(7.8),
static_cast<RealType>(1 - 0.08076),
static_cast<RealType>(0.08076),
tolerance);
check_skew_normal(
static_cast<RealType>(-3),
static_cast<RealType>(5),
static_cast<RealType>(0),
static_cast<RealType>(-4.5),
static_cast<RealType>(0.38209),
static_cast<RealType>(1 - 0.38209),
tolerance);
check_skew_normal(
static_cast<RealType>(-3),
static_cast<RealType>(5),
static_cast<RealType>(0),
static_cast<RealType>(-1.5),
static_cast<RealType>(1 - 0.38209),
static_cast<RealType>(0.38209),
tolerance);
check_skew_normal(
static_cast<RealType>(-3),
static_cast<RealType>(5),
static_cast<RealType>(0),
static_cast<RealType>(-8.5),
static_cast<RealType>(0.13567),
static_cast<RealType>(1 - 0.13567),
tolerance);
check_skew_normal(
static_cast<RealType>(-3),
static_cast<RealType>(5),
static_cast<RealType>(0),
static_cast<RealType>(2.5),
static_cast<RealType>(1 - 0.13567),
static_cast<RealType>(0.13567),
tolerance);
// Tests where shape != 0, specific to skew_normal distribution.
//void check_skew_normal(RealType mean, RealType scale, RealType shape, RealType x, RealType p, RealType q, RealType tol)
check_skew_normal( // 1st R example.
static_cast<RealType>(1.1),
static_cast<RealType>(2.2),
static_cast<RealType>(-3.3),
static_cast<RealType>(0.4), // x
static_cast<RealType>(0.733918618927874), // p == psn
static_cast<RealType>(1 - 0.733918618927874), // q
tolerance);
// Not sure about these yet.
//check_skew_normal( // 2nd R example.
//static_cast<RealType>(1.1),
//static_cast<RealType>(0.02),
//static_cast<RealType>(0.03),
//static_cast<RealType>(1.3), // x
//static_cast<RealType>(0.01), // p
//static_cast<RealType>(0.09), // q
//tolerance);
//check_skew_normal( // 3nd R example.
//static_cast<RealType>(10.1),
//static_cast<RealType>(5.),
//static_cast<RealType>(-0.03),
//static_cast<RealType>(-1.3), // x
//static_cast<RealType>(0.01201290665838824), // p
//static_cast<RealType>(1. - 0.01201290665838824), // q 0.987987101
//tolerance);
// Tests for PDF: we know that the normal peak value is at 1/sqrt(2*pi)
//
tolerance = boost::math::tools::epsilon<RealType>() * 5; // 5 eps as a fraction
BOOST_CHECK_CLOSE_FRACTION(
pdf(skew_normal_distribution<RealType>(), static_cast<RealType>(0)),
static_cast<RealType>(0.3989422804014326779399460599343818684759L), // 1/sqrt(2*pi)
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
pdf(skew_normal_distribution<RealType>(3), static_cast<RealType>(3)),
static_cast<RealType>(0.3989422804014326779399460599343818684759L),
tolerance);
BOOST_CHECK_CLOSE_FRACTION(
pdf(skew_normal_distribution<RealType>(3, 5), static_cast<RealType>(3)),
static_cast<RealType>(0.3989422804014326779399460599343818684759L / 5),
tolerance);
// Shape != 0.
BOOST_CHECK_CLOSE_FRACTION(
pdf(skew_normal_distribution<RealType>(3,5,1e-6), static_cast<RealType>(3)),
static_cast<RealType>(0.3989422804014326779399460599343818684759L / 5),
tolerance);
// Checks on mean, variance cumulants etc.
// Checks on shape ==0
RealType tol5 = boost::math::tools::epsilon<RealType>() * 5;
skew_normal_distribution<RealType> dist(8, 3);
RealType x = static_cast<RealType>(0.125);
BOOST_MATH_STD_USING // ADL of std math lib names
// mean:
BOOST_CHECK_CLOSE(
mean(dist)
, static_cast<RealType>(8), tol5);
// variance:
BOOST_CHECK_CLOSE(
variance(dist)
, static_cast<RealType>(9), tol5);
// std deviation:
BOOST_CHECK_CLOSE(
standard_deviation(dist)
, static_cast<RealType>(3), tol5);
// hazard:
BOOST_CHECK_CLOSE(
hazard(dist, x)
, pdf(dist, x) / cdf(complement(dist, x)), tol5);
// cumulative hazard:
BOOST_CHECK_CLOSE(
chf(dist, x)
, -log(cdf(complement(dist, x))), tol5);
// coefficient_of_variation:
BOOST_CHECK_CLOSE(
coefficient_of_variation(dist)
, standard_deviation(dist) / mean(dist), tol5);
// mode:
BOOST_CHECK_CLOSE_FRACTION(mode(dist), static_cast<RealType>(8), 0.001f);
BOOST_CHECK_CLOSE(
median(dist)
, static_cast<RealType>(8), tol5);
// skewness:
BOOST_CHECK_CLOSE(
skewness(dist)
, static_cast<RealType>(0), tol5);
// kurtosis:
BOOST_CHECK_CLOSE(
kurtosis(dist)
, static_cast<RealType>(3), tol5);
// kurtosis excess:
BOOST_CHECK_CLOSE(
kurtosis_excess(dist)
, static_cast<RealType>(0), tol5);
skew_normal_distribution<RealType> norm01(0, 1); // Test default (0, 1)
BOOST_CHECK_CLOSE(
mean(norm01),
static_cast<RealType>(0), 0); // Mean == zero
skew_normal_distribution<RealType> defsd_norm01(0); // Test default (0, sd = 1)
BOOST_CHECK_CLOSE(
mean(defsd_norm01),
static_cast<RealType>(0), 0); // Mean == zero
skew_normal_distribution<RealType> def_norm01; // Test default (0, sd = 1)
BOOST_CHECK_CLOSE(
mean(def_norm01),
static_cast<RealType>(0), 0); // Mean == zero
BOOST_CHECK_CLOSE(
standard_deviation(def_norm01),
static_cast<RealType>(1), 0); //
BOOST_CHECK_CLOSE(
mode(def_norm01),
static_cast<RealType>(0), 0); // Mode == zero
// Skew_normal tests with shape != 0.
{
// Note these tolerances are expressed as percentages, hence the extra * 100 on the end:
RealType tol10 = boost::math::tools::epsilon<RealType>() * 10 * 100;
RealType tol100 = boost::math::tools::epsilon<RealType>() * 100 * 100;
//skew_normal_distribution<RealType> dist(1.1, 0.02, 0.03);
BOOST_MATH_STD_USING // ADL of std math lib names.
// Test values from R = see skew_normal_drv.cpp which included the R code used.
// Note test values have limited precision.
if(boost::math::tools::digits<RealType>() <= 64)
{
dist = skew_normal_distribution<RealType>(static_cast<RealType>(1.1l), static_cast<RealType>(2.2l), static_cast<RealType>(-3.3l));
BOOST_CHECK_CLOSE( // mean:
mean(dist)
, static_cast<RealType>(-0.5799089925398568258625490172876619L), tol10 * 2);
std::cout << std::setprecision(17) << "Variance = " << variance(dist) << std::endl;
BOOST_CHECK_CLOSE( // variance: N[variance[skewnormaldistribution[1.1, 2.2, -3.3]], 50]
variance(dist)
, static_cast<RealType>(2.0179057767837232633904061072049998357047989154484L), tol10);
BOOST_CHECK_CLOSE( // skewness:
skewness(dist)
, static_cast<RealType>(-0.709854548171537509192897824663027155L), tol100);
BOOST_CHECK_CLOSE( // kurtosis:
kurtosis(dist)
, static_cast<RealType>(3.55387526252417906013770535120683805L), tol100);
BOOST_CHECK_CLOSE( // kurtosis excess:
kurtosis_excess(dist)
, static_cast<RealType>(0.553875262524179060137705351206838143L), tol100);
BOOST_CHECK_CLOSE(
pdf(dist, static_cast<RealType>(0.4L)),
static_cast<RealType>(0.294140110156599539564571034730246656L),
tol10);
BOOST_CHECK_CLOSE(
cdf(dist, static_cast<RealType>(0.4L)),
static_cast<RealType>(0.733918618927873797632667645226588243L),
tol100);
BOOST_CHECK_CLOSE(
quantile(dist, static_cast<RealType>(0.3L)),
static_cast<RealType>(-1.18010406808687531441924729956233392L),
tol100);
{ // mode tests
dist = skew_normal_distribution<RealType>(static_cast<RealType>(0.l), static_cast<RealType>(1.l), static_cast<RealType>(4.l));
// cout << "pdf(dist, 0) = " << pdf(dist, 0) << ", pdf(dist, 0.45) = " << pdf(dist, 0.45) << endl;
// BOOST_CHECK_CLOSE(mode(dist), boost::math::constants::root_two<RealType>() / 2, tol5);
BOOST_CHECK_CLOSE(mode(dist), static_cast<RealType>(0.416972994973888639318345129445233074L), tol100);
}
}
dist = skew_normal_distribution<RealType>(static_cast<RealType>(1.1l), static_cast<RealType>(0.02l), static_cast<RealType>(0.03l));
BOOST_CHECK_CLOSE( // mean:
mean(dist)
, static_cast<RealType>(1.1004785154529557886162056250600829L), tol10);
BOOST_CHECK_CLOSE( // variance:
variance(dist)
, static_cast<RealType>(0.000399771022961282516451686289719995601L), tol10);
BOOST_CHECK_CLOSE( // skewness:
skewness(dist)
, static_cast<RealType>(5.88348112598903597820852388986073439e-006L), tol100);
BOOST_CHECK_CLOSE( // kurtosis:
kurtosis(dist)
, static_cast<RealType>(3.L + 9.290347581213780023900209941e-008L), tol100);
BOOST_CHECK_CLOSE( // kurtosis excess:
kurtosis_excess(dist)
, static_cast<RealType>(9.29034758121378002390020993765449518e-008L), tol100);
dist = skew_normal_distribution<RealType>(static_cast<RealType>(10.1l), static_cast<RealType>(5.l), static_cast<RealType>(-0.03l));
BOOST_CHECK_CLOSE( // mean:
mean(dist)
, static_cast<RealType>(9.98037113676105284594859373497928476L), tol10);
BOOST_CHECK_CLOSE( // variance:
variance(dist)
, static_cast<RealType>(24.9856889350801572782303931074997234L), tol10);
BOOST_CHECK_CLOSE( // skewness:
skewness(dist)
, static_cast<RealType>(-5.88348112598903597820852388986073439e-006L), tol100);
BOOST_CHECK_CLOSE( // kurtosis:
kurtosis(dist)
, static_cast<RealType>(3.L + 9.290347581213780023900209941e-008L), tol100);
BOOST_CHECK_CLOSE( // kurtosis excess:
kurtosis_excess(dist)
, static_cast<RealType>(9.29034758121378002390020993765449518e-008L), tol100);
dist = skew_normal_distribution<RealType>(static_cast<RealType>(-10.1l), static_cast<RealType>(5.l), static_cast<RealType>(30.l));
BOOST_CHECK_CLOSE( // mean:
mean(dist)
, static_cast<RealType>(-6.11279169674138408531365149047090859L), 2 * tol10);
BOOST_CHECK_CLOSE( // variance:
variance(dist)
, static_cast<RealType>(9.10216994642554914628242097277880642L), tol10 * 2);
BOOST_CHECK_CLOSE( // skewness:
skewness(dist)
, static_cast<RealType>(0.990724254436869044244695246354219556L), tol100);
BOOST_CHECK_CLOSE( // kurtosis:
kurtosis(dist)
, static_cast<RealType>(3.L + 0.8638862008406084244563090239530549L), tol100);
BOOST_CHECK_CLOSE( // kurtosis excess:
kurtosis_excess(dist)
, static_cast<RealType>(0.863886200840608424456309023953054896L), tol100);
BOOST_MATH_CHECK_THROW(cdf(skew_normal_distribution<RealType>(0, 0, 0), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(cdf(skew_normal_distribution<RealType>(0, -1, 0), 0), std::domain_error);
BOOST_MATH_CHECK_THROW(quantile(skew_normal_distribution<RealType>(0, 1, 0), -1), std::domain_error);
BOOST_MATH_CHECK_THROW(quantile(skew_normal_distribution<RealType>(0, 1, 0), 2), std::domain_error);
check_out_of_range<skew_normal_distribution<RealType> >(1, 1, 1);
}
} // template <class RealType>void test_spots(RealType)
BOOST_AUTO_TEST_CASE( test_main )
{
using boost::math::skew_normal;
using boost::math::skew_normal_distribution;
//int precision = 17; // std::numeric_limits<double::max_digits10;
double tolfeweps = numeric_limits<double>::epsilon() * 5;
//double tol6decdigits = numeric_limits<float>::epsilon() * 2;
// Check that can generate skew_normal distribution using the two convenience methods:
boost::math::skew_normal w12(1., 2); // Using typedef.
boost::math::skew_normal_distribution<> w01; // Use default unity values for mean and scale.
// Note NOT myn01() as the compiler will interpret as a function!
// Checks on constructors.
// Default parameters.
BOOST_CHECK_EQUAL(w01.location(), 0);
BOOST_CHECK_EQUAL(w01.scale(), 1);
BOOST_CHECK_EQUAL(w01.shape(), 0);
skew_normal_distribution<> w23(2., 3); // Using default RealType double.
BOOST_CHECK_EQUAL(w23.scale(), 3);
BOOST_CHECK_EQUAL(w23.shape(), 0);
skew_normal_distribution<> w123(1., 2., 3.); // Using default RealType double.
BOOST_CHECK_EQUAL(w123.location(), 1.);
BOOST_CHECK_EQUAL(w123.scale(), 2.);
BOOST_CHECK_EQUAL(w123.shape(), 3.);
BOOST_CHECK_CLOSE_FRACTION(mean(w01), static_cast<double>(0), tolfeweps); // Default mean == zero
BOOST_CHECK_CLOSE_FRACTION(scale(w01), static_cast<double>(1), tolfeweps); // Default scale == unity
// Basic sanity-check spot values for all floating-point types..
// (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_spots(0.0L); // Test long double.
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::endl;
#endif
/* */
} // BOOST_AUTO_TEST_CASE( test_main )
/*
Output:
*/
|