File: test_trapezoidal.cpp

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (387 lines) | stat: -rw-r--r-- 15,612 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/*
 * Copyright Nick Thompson, 2017
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0. (See accompanying file
 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 */
#define BOOST_TEST_MODULE trapezoidal_quadrature

#include <complex>
#include <boost/config.hpp>
#include <boost/type_index.hpp>
 //#include <boost/multiprecision/mpc.hpp>
#include <boost/test/included/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/tools/test_value.hpp>
#include <boost/math/concepts/real_concept.hpp>
#include <boost/math/special_functions/bessel.hpp>
#include <boost/math/quadrature/trapezoidal.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/complex128.hpp>
#endif

#if __has_include(<stdfloat>)
#  include <stdfloat>
#endif

using boost::multiprecision::cpp_bin_float_50;
using boost::multiprecision::cpp_bin_float_100;
using boost::math::quadrature::trapezoidal;

// These tests come from:
// https://doi.org/10.1023/A:1025524324969
// "Computing special functions by using quadrature rules",  Gil, Segura, and Temme.
template<class Complex>
void test_complex_bessel()
{
    std::cout << "Testing that complex-valued integrands are integrated correctly by the adaptive trapezoidal routine on type " << boost::typeindex::type_id<Complex>().pretty_name()  << "\n";
    typedef typename Complex::value_type Real;
    Complex z{2, 3};
    int n = 2;
    using boost::math::constants::pi;
    auto bessel_integrand = [&n, &z](Real theta)->Complex
    {
        using std::cos;
        using std::sin;
        Real t1 = sin(theta);
        Real t2 = - n*theta;
        Complex arg = z*t1 + t2;
        return cos(arg)/pi<Real>();
    };

    using boost::math::quadrature::trapezoidal;

    Real a = 0;
    Real b = pi<Real>();
    Complex Jnz = trapezoidal<decltype(bessel_integrand), Real>(bessel_integrand, a, b);
    // N[BesselJ[2, 2 + 3 I], 143]
    // 1.257674591970511077630764085052638490387449039392695959943027966195657681586539389134094087028482099931927725892... +
    // 2.318771368505683055818032722011594415038779144567369903204833213112457210243098545874099591376455981793627257060... i
    Real Jnzx = BOOST_MATH_TEST_VALUE(Real, 1.257674591970511077630764085052638490387449039392695959943027966195657681586539389134094087028482099931927725892);
    Real Jnzy = BOOST_MATH_TEST_VALUE(Real, 2.318771368505683055818032722011594415038779144567369903204833213112457210243098545874099591376455981793627257060);
    Real tol = 10*std::numeric_limits<Real>::epsilon();
    BOOST_CHECK_CLOSE_FRACTION(Jnz.real(), Jnzx, tol);
    BOOST_CHECK_CLOSE_FRACTION(Jnz.imag(), Jnzy, tol);
}

template<class Complex>
void test_I0_complex()
{
    std::cout << "Testing that complex-argument I0 is calculated correctly by the adaptive trapezoidal routine on type " << boost::typeindex::type_id<Complex>().pretty_name()  << "\n";
    typedef typename Complex::value_type Real;
    Complex z{2, 3};
    using boost::math::constants::pi;
    auto I0 = [&z](Real theta)->Complex
    {
        using std::cos;
        using std::exp;
        return exp(z*cos(theta))/pi<Real>();
    };

    using boost::math::quadrature::trapezoidal;

    Real a = 0;
    Real b = pi<Real>();
    Complex I0z = trapezoidal<decltype(I0), Real>(I0, a, b);
    // N[BesselI[0, 2 + 3 I], 143]
    // -1.24923487960742219637619681391438589436703710701063561548156438052154090067526565701278826317992172207565649925713468090525951417141982808439560899101
    // 0.947983792057734776114060623981442199525094227418764823692296622398838765371662384207319492908490909109393495109183270208372778907692930675595924819922 i
    Real I0zx = BOOST_MATH_TEST_VALUE(Real, -1.24923487960742219637619681391438589436703710701063561548156438052154090067526565701278826317992172207565649925713468090525951417141982808439560899101);
    Real I0zy = BOOST_MATH_TEST_VALUE(Real, 0.947983792057734776114060623981442199525094227418764823692296622398838765371662384207319492908490909109393495109183270208372778907692930675595924819922);
    Real tol = 10*std::numeric_limits<Real>::epsilon();
    BOOST_CHECK_CLOSE_FRACTION(I0z.real(), I0zx, tol);
    BOOST_CHECK_CLOSE_FRACTION(I0z.imag(), I0zy, tol);
}


template<class Complex>
void test_erfc()
{
    std::cout << "Testing that complex-argument erfc is calculated correctly by the adaptive trapezoidal routine on type " << boost::typeindex::type_id<Complex>().pretty_name()  << "\n";
    typedef typename Complex::value_type Real;
    Complex z{2, -1};
    using boost::math::constants::pi;
    using boost::math::constants::two_pi;
    auto erfc = [&z](Real theta)->Complex
    {
        using std::exp;
        using std::tan;
        Real t = tan(theta/2);
        Complex arg = -z*z*(1+t*t);
        return exp(arg)/two_pi<Real>();
    };

    using boost::math::quadrature::trapezoidal;

    Real a = -pi<Real>();
    Real b = pi<Real>();
    Complex erfcz = trapezoidal<decltype(erfc), Real>(erfc, a, b, boost::math::tools::root_epsilon<Real>(), 17);
    // N[Erfc[2-i], 150]
    //-0.00360634272565175091291182820541914235532928536595056623793472801084629874817202107825472707423984408881473019087931573313969503235634965264302640170177
    // - 0.0112590060288150250764009156316482248536651598819882163212627394923365188251633729432967232423246312345152595958230197778555210858871376231770868078020 i
    Real erfczx = BOOST_MATH_TEST_VALUE(Real, -0.00360634272565175091291182820541914235532928536595056623793472801084629874817202107825472707423984408881473019087931573313969503235634965264302640170177);
    Real erfczy = BOOST_MATH_TEST_VALUE(Real, -0.0112590060288150250764009156316482248536651598819882163212627394923365188251633729432967232423246312345152595958230197778555210858871376231770868078020);
    Real tol = 5000*std::numeric_limits<Real>::epsilon();
    BOOST_CHECK_CLOSE_FRACTION(erfcz.real(), erfczx, tol);
    BOOST_CHECK_CLOSE_FRACTION(erfcz.imag(), erfczy, tol);
}


template<class Real>
void test_constant()
{
    std::cout << "Testing constants are integrated correctly by the adaptive trapezoidal routine on type " << boost::typeindex::type_id<Real>().pretty_name()  << "\n";

    auto f = [](Real)->Real { return boost::math::constants::half<Real>(); };
    Real Q = trapezoidal<decltype(f), Real>(f, static_cast<Real>(0.0), static_cast<Real>(10.0));
    BOOST_CHECK_CLOSE(Q, static_cast<Real>(5.0), 100*std::numeric_limits<Real>::epsilon());
    Q = trapezoidal<decltype(f), Real>(f, static_cast<Real>(10.0), static_cast<Real>(0.0));
    BOOST_CHECK_CLOSE(Q, static_cast<Real>(-5.0), 100*std::numeric_limits<Real>::epsilon());

    Q = trapezoidal<decltype(f), Real>(f, static_cast<Real>(10.0), static_cast<Real>(10.0));
    BOOST_CHECK_CLOSE(Q, static_cast<Real>(0), 100*std::numeric_limits<Real>::epsilon());
}


template<class Real>
void test_rational_periodic()
{
    using boost::math::constants::two_pi;
    using boost::math::constants::third;
    std::cout << "Testing that rational periodic functions are integrated correctly by trapezoidal rule on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";

    auto f = [](Real x)->Real { using std::cos; return 1 / (5 - 4 * cos(x)); };

    Real tol = 100*boost::math::tools::epsilon<Real>();
    Real Q = trapezoidal(f, (Real) 0.0, two_pi<Real>(), tol);

    BOOST_CHECK_CLOSE_FRACTION(Q, two_pi<Real>()*third<Real>(), 10*tol);
}

template<class Real>
void test_bump_function()
{
    std::cout << "Testing that bump functions are integrated correctly by trapezoidal rule on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
    auto f = [](Real x)->Real {
        if( x>= 1 || x <= -1)
        {
            return (Real) 0;
        }
        using std::exp;
        return (Real) exp(-(Real) 1/(1-x*x));
    };
    Real tol = boost::math::tools::epsilon<Real>();
    Real Q = trapezoidal(f, (Real) -1, (Real) 1, tol);
    // 2*NIntegrate[Exp[-(1/(1 - x^2))], {x, 0, 1}, WorkingPrecision -> 210]
    Real Q_exp = BOOST_MATH_TEST_VALUE(Real, 0.44399381616807943782304892117055266376120178904569749730748455394704);
    BOOST_CHECK_CLOSE_FRACTION(Q, Q_exp, 30*tol);
}

template<class Real>
void test_zero_function()
{
    std::cout << "Testing that zero functions are integrated correctly by trapezoidal rule on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
    auto f = [](Real)->Real { return (Real) 0;};
    Real tol = 100* boost::math::tools::epsilon<Real>();
    Real Q = trapezoidal(f, (Real) -1, (Real) 1, tol);
    BOOST_CHECK_SMALL(Q, 100*tol);
}

template<class Real>
void test_sinsq()
{
    std::cout << "Testing that sin(x)^2 is integrated correctly by the trapezoidal rule on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
    auto f = [](Real x)->Real { using std::sin; return sin(10 * x) * sin(10 * x); };
    Real tol = 100* boost::math::tools::epsilon<Real>();
    Real Q = trapezoidal(f, (Real) 0, (Real) boost::math::constants::pi<Real>(), tol);
    BOOST_CHECK_CLOSE_FRACTION(Q, boost::math::constants::half_pi<Real>(), tol);

}

template<class Real>
void test_slowly_converging()
{
    using std::sqrt;
    std::cout << "Testing that non-periodic functions are correctly integrated by the trapezoidal rule, even if slowly, on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
    // This function is not periodic, so it should not be fast to converge:
    auto f = [](Real x)->Real { using std::sqrt;  return sqrt(1 - x*x); };

    Real tol = sqrt(sqrt(boost::math::tools::epsilon<Real>()));
    if (boost::math::tools::digits<Real>() > 100)
       tol *= 10;
    Real error_estimate;
    Real Q = trapezoidal(f, (Real) 0, (Real) 1, tol, 15, &error_estimate);
    BOOST_CHECK_CLOSE_FRACTION(Q, boost::math::constants::half_pi<Real>()/2, 10*tol);
}

template<class Real>
void test_rational_sin()
{
    using std::pow;
    using std::sin;
    using boost::math::constants::two_pi;
    using boost::math::constants::half;
    std::cout << "Testing that a rational sin function is integrated correctly by the trapezoidal rule on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
    Real a = 5;
    auto f = [=](Real x)->Real { using std::sin;  Real t = a + sin(x); return 1.0f / (t*t); };

    Real expected = two_pi<Real>()*a/pow(a*a - 1, 3*half<Real>());
    Real tol = 100* boost::math::tools::epsilon<Real>();
    Real Q = trapezoidal(f, (Real) 0, (Real) boost::math::constants::two_pi<Real>(), tol);
    BOOST_CHECK_CLOSE_FRACTION(Q, expected, tol);
}

BOOST_AUTO_TEST_CASE(trapezoidal_quadrature)
{

#if defined(__STDCPP_FLOAT32_T__) && defined(__STDCPP_FLOAT64_T__)
    test_constant<std::float32_t>();
    test_constant<std::float64_t>();
#else
    test_constant<float>();
    test_constant<double>();
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    test_constant<long double>();
#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
    test_constant<boost::math::concepts::real_concept>();
#endif
    test_constant<cpp_bin_float_50>();
    test_constant<cpp_bin_float_100>();

#if defined(__STDCPP_FLOAT32_T__) && defined(__STDCPP_FLOAT64_T__)
    test_rational_periodic<std::float32_t>();
    test_rational_periodic<std::float64_t>();
#else
    test_rational_periodic<float>();
    test_rational_periodic<double>();
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    test_rational_periodic<long double>();
#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
    test_rational_periodic<boost::math::concepts::real_concept>();
#endif

    #ifdef BOOST_MATH_RUN_MP_TESTS
    test_rational_periodic<cpp_bin_float_50>();
    test_rational_periodic<cpp_bin_float_100>();
    #endif

#if defined(__STDCPP_FLOAT32_T__) && defined(__STDCPP_FLOAT64_T__)
    test_bump_function<std::float32_t>();
    test_bump_function<std::float64_t>();
#else
    test_bump_function<float>();
    test_bump_function<double>();
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    test_bump_function<long double>();
#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
    test_rational_periodic<boost::math::concepts::real_concept>();
#endif

    #ifdef BOOST_MATH_RUN_MP_TESTS
    test_rational_periodic<cpp_bin_float_50>();
    #endif

#if defined(__STDCPP_FLOAT32_T__) && defined(__STDCPP_FLOAT64_T__)
    test_zero_function<std::float32_t>();
    test_zero_function<std::float64_t>();
#else
    test_zero_function<float>();
    test_zero_function<double>();
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    test_zero_function<long double>();
#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
    test_zero_function<boost::math::concepts::real_concept>();
#endif

    #ifdef BOOST_MATH_RUN_MP_TESTS
    test_zero_function<cpp_bin_float_50>();
    test_zero_function<cpp_bin_float_100>();
    #endif

#if defined(__STDCPP_FLOAT32_T__) && defined(__STDCPP_FLOAT64_T__)
    test_sinsq<std::float32_t>();
    test_sinsq<std::float64_t>();
#else
    test_sinsq<float>();
    test_sinsq<double>();
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    test_sinsq<long double>();
#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
    test_sinsq<boost::math::concepts::real_concept>();
#endif

    #ifdef BOOST_MATH_RUN_MP_TESTS
    test_sinsq<cpp_bin_float_50>();
    test_sinsq<cpp_bin_float_100>();
    #endif

#if defined(__STDCPP_FLOAT32_T__) && defined(__STDCPP_FLOAT64_T__)
    test_slowly_converging<std::float32_t>();
    test_slowly_converging<std::float64_t>();
#else
    test_slowly_converging<float>();
    test_slowly_converging<double>();
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    test_slowly_converging<long double>();
#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
    test_slowly_converging<boost::math::concepts::real_concept>();
#endif

#if defined(__STDCPP_FLOAT32_T__) && defined(__STDCPP_FLOAT64_T__)
    test_rational_sin<std::float32_t>();
    test_rational_sin<std::float64_t>();
#else
    test_rational_sin<float>();
    test_rational_sin<double>();
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    test_rational_sin<long double>();
#endif
    //test_rational_sin<boost::math::concepts::real_concept>();
    #ifdef BOOST_MATH_RUN_MP_TESTS
    test_rational_sin<cpp_bin_float_50>();
    #endif

    test_complex_bessel<std::complex<float>>();
    test_complex_bessel<std::complex<double>>();
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    test_complex_bessel<std::complex<long double>>();
#endif
    //test_complex_bessel<boost::multiprecision::mpc_complex_100>();
    test_I0_complex<std::complex<float>>();
    test_I0_complex<std::complex<double>>();
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    test_I0_complex<std::complex<long double>>();
#endif
    //test_I0_complex<boost::multiprecision::mpc_complex_100>();
    test_erfc<std::complex<float>>();
    test_erfc<std::complex<double>>();
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    test_erfc<std::complex<long double>>();
#endif
    //test_erfc<boost::multiprecision::number<boost::multiprecision::mpc_complex_backend<20>>>();
    //test_erfc<boost::multiprecision::number<boost::multiprecision::mpc_complex_backend<30>>>();
    //test_erfc<boost::multiprecision::mpc_complex_50>();
    //test_erfc<boost::multiprecision::mpc_complex_100>();

#ifdef BOOST_HAS_FLOAT128
    test_complex_bessel<boost::multiprecision::complex128>();
    test_I0_complex<boost::multiprecision::complex128>();
    test_erfc<boost::multiprecision::complex128>();
#endif

}