1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/*
* Copyright Nick Thompson, 2019
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include "math_unit_test.hpp"
#include <numeric>
#include <utility>
#include <random>
#include <boost/core/demangle.hpp>
#include <boost/math/interpolators/whittaker_shannon.hpp>
#if __has_include(<stdfloat>)
# include <stdfloat>
#endif
using boost::math::interpolators::whittaker_shannon;
template<class Real>
void test_trivial()
{
Real t0 = 0;
Real h = Real(1)/Real(16);
std::vector<Real> v{Real(1.5)};
std::vector<Real> v_copy = v;
auto ws = whittaker_shannon<decltype(v)>(std::move(v), t0, h);
Real expected = 0;
if(!CHECK_MOLLIFIED_CLOSE(expected, ws.prime(0), 10*std::numeric_limits<Real>::epsilon())) {
std::cerr << " Problem occurred at abscissa " << 0 << "\n";
}
expected = -v_copy[0]/h;
if(!CHECK_MOLLIFIED_CLOSE(expected, ws.prime(h), 10*std::numeric_limits<Real>::epsilon())) {
std::cerr << " Problem occurred at abscissa " << 0 << "\n";
}
}
template<class Real>
void test_knots()
{
Real t0 = 0;
Real h = Real(1)/Real(16);
size_t n = 512;
std::vector<Real> v(n);
std::mt19937 gen(323723);
std::uniform_real_distribution<Real> dis(Real(1.0), Real(2.0));
for(size_t i = 0; i < n; ++i) {
v[i] = static_cast<Real>(dis(gen));
}
auto ws = whittaker_shannon<decltype(v)>(std::move(v), t0, h);
size_t i = 0;
while (i < n) {
Real t = t0 + i*h;
Real expected = ws[i];
Real computed = ws(t);
CHECK_ULP_CLOSE(expected, computed, 16);
++i;
}
}
template<class Real>
void test_bump()
{
using std::exp;
using std::abs;
using std::sqrt;
auto bump = [](Real x) { using std::exp; using std::abs; if (abs(x) >= 1) { return Real(0); } return exp(-Real(1)/(Real(1)-x*x)); };
auto bump_prime = [&bump](Real x) { Real z = 1-x*x; return -2*x*bump(x)/(z*z); };
Real t0 = -1;
size_t n = 2049;
Real h = Real(2)/Real(n-1);
std::vector<Real> v(n);
for(size_t i = 0; i < n; ++i) {
Real t = t0 + i*h;
v[i] = bump(t);
}
std::vector<Real> v_copy = v;
auto ws = whittaker_shannon<decltype(v)>(std::move(v), t0, h);
// Test the knots:
for(size_t i = v_copy.size()/4; i < 3*v_copy.size()/4; ++i) {
Real t = t0 + i*h;
Real expected = v_copy[i];
Real computed = ws(t);
if(!CHECK_MOLLIFIED_CLOSE(expected, computed, 10*std::numeric_limits<Real>::epsilon())) {
std::cerr << " Problem occurred at abscissa " << t << "\n";
}
Real expected_prime = bump_prime(t);
Real computed_prime = ws.prime(t);
if(!CHECK_MOLLIFIED_CLOSE(expected_prime, computed_prime, 1000*std::numeric_limits<Real>::epsilon())) {
std::cerr << " Problem occurred at abscissa " << t << "\n";
}
}
std::mt19937 gen(323723);
std::uniform_real_distribution<long double> dis(-0.85, 0.85);
size_t i = 0;
while (i++ < 1000)
{
Real t = static_cast<Real>(dis(gen));
Real expected = bump(t);
Real computed = ws(t);
if(!CHECK_MOLLIFIED_CLOSE(expected, computed, 10*std::numeric_limits<Real>::epsilon())) {
std::cerr << " Problem occurred at abscissa " << t << "\n";
}
Real expected_prime = bump_prime(t);
Real computed_prime = ws.prime(t);
if(!CHECK_MOLLIFIED_CLOSE(expected_prime, computed_prime, sqrt(std::numeric_limits<Real>::epsilon()))) {
std::cerr << " Problem occurred at abscissa " << t << "\n";
}
}
}
int main()
{
#ifdef __STDCPP_FLOAT32_T__
test_trivial<std::float32_t>();
test_knots<std::float32_t>();
#else
test_trivial<float>();
test_knots<float>();
#endif
#ifdef __STDCPP_FLOAT64_T__
test_trivial<std::float64_t>();
test_knots<std::float64_t>();
test_bump<std::float64_t>();
#else
test_trivial<double>();
test_knots<double>();
test_bump<double>();
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_knots<long double>();
#if LDBL_MANT_DIG <= 64
// Anything more precise than this fails for unknown reasons
test_bump<long double>();
#endif
#endif
return boost::math::test::report_errors();
}
|