File: continuous_gompertz.rst

package info (click to toggle)
scipy 1.16.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 236,088 kB
  • sloc: cpp: 503,720; python: 345,302; ansic: 195,677; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 857; makefile: 771; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (26 lines) | stat: -rw-r--r-- 952 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

.. _continuous-gompertz:

Gompertz (Truncated Gumbel) Distribution
========================================

For :math:`x\geq0` and :math:`c>0` . In JKB the two shape parameters :math:`b,a` are reduced to the single shape-parameter :math:`c=b/a` . As :math:`a` is just a scale parameter when :math:`a\neq0` . If :math:`a=0,` the distribution reduces to the exponential distribution scaled by :math:`1/b.` Thus, the standard form is given as

.. math::
   :nowrap:

    \begin{eqnarray*} f\left(x;c\right) & = & ce^{x}\exp\left(-c\left(e^{x}-1\right)\right)\\
    F\left(x;c\right) & = & 1-\exp\left(-c\left(e^{x}-1\right)\right)\\
    G\left(q;c\right) & = & \log\left(1-\frac{1}{c}\log\left(1-q\right)\right)\end{eqnarray*}

.. math::

     h\left[X\right]=1-\log\left(c\right)-e^{c}\mathrm{Ei}\left(1,c\right),

where

.. math::

     \mathrm{Ei}\left(n,x\right)=\int_{1}^{\infty}t^{-n}\exp\left(-xt\right)dt

Implementation: `scipy.stats.gompertz`