File: continuous_powernorm.rst

package info (click to toggle)
scipy 1.16.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 236,088 kB
  • sloc: cpp: 503,720; python: 345,302; ansic: 195,677; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 857; makefile: 771; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (27 lines) | stat: -rw-r--r-- 993 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

.. _continuous-powernorm:

Power Normal Distribution
=========================

A generalization of the normal distribution, with one shape parameter :math:`c>0` and support :math:`x\geq0`.

.. math::
   :nowrap:

    \begin{eqnarray*} f\left(x;c\right) & = & c\phi\left(x\right)\left(\Phi\left(-x\right)\right)^{c-1}\\
    F\left(x;c\right) & = & 1-\left(\Phi\left(-x\right)\right)^{c}\\
    G\left(q;c\right) & = & -\Phi^{-1}\left(\left(1-q\right)^{1/c}\right)\end{eqnarray*}

.. math::

     \mu_{n}^{\prime}=\left(-1\right)^{n}\int_{0}^{1}\left[\Phi^{-1}\left(y^{1/c}\right)\right]^{n}dy

.. math::
   :nowrap:

    \begin{eqnarray*} \mu & = & \mu_{1}^{\prime}\\ \mu_{2} & = & \mu_{2}^{\prime}-\mu^{2}\\ \gamma_{1} & = & \frac{\mu_{3}^{\prime}-3\mu\mu_{2}-\mu^{3}}{\mu_{2}^{3/2}}\\ \gamma_{2} & = & \frac{\mu_{4}^{\prime}-4\mu\mu_{3}-6\mu^{2}\mu_{2}-\mu^{4}}{\mu_{2}^{2}}-3\end{eqnarray*}

For :math:`c=1` this reduces to the normal distribution.

Implementation: `scipy.stats.powernorm`