File: continuous_burr12.rst

package info (click to toggle)
scipy 1.16.3-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 236,092 kB
  • sloc: cpp: 503,720; python: 345,302; ansic: 195,677; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 857; makefile: 792; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (28 lines) | stat: -rw-r--r-- 977 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

.. _continuous-burr12:

Burr12 Distribution
===================

There are two shape parameters :math:`c,d > 0` and the support is :math:`x \in [0,\infty)`.
The Burr12 distribution is also known as the Singh-Maddala distribution.



.. math::
   :nowrap:

    \begin{eqnarray*}
    f\left(x;c,d\right) & = & {cd} \frac{x^{c-1}} {\left(1+x^{c}\right)^{d+1}} \\
    F\left(x;c,d\right) & = & 1 - \left(1+x^{c}\right)^{-d}\\
    G\left(q;c,d\right) & = & \left((1-q)^{-1/d}-1\right)^{-1/c}\\
    S\left(x;c,d\right) & = & \left(1+x^{c}\right)^{-d}\\
    \mu & = & d \,  B\left(d-\frac{1}{c}, 1+\frac{1}{c}\right)\\
    \mu_{n} & = & d \, B\left(d-\frac{n}{c}, 1+\frac{n}{c}\right)\\
    m_{d} & = & \left(\frac{c-1}{c d + 1}\right)^{1/c} \,\text{if }\quad c>1 \text{, otherwise }\quad 0\\
    m_{n} & = & \left(2^{1/d}-1\right)^{-1/c}
    \end{eqnarray*}

where :math:`B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}` is the Beta function.

Implementation: `scipy.stats.burr12`