File: continuous_expon.rst

package info (click to toggle)
scipy 1.16.3-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 236,092 kB
  • sloc: cpp: 503,720; python: 345,302; ansic: 195,677; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 857; makefile: 792; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (35 lines) | stat: -rw-r--r-- 791 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

.. _continuous-expon:

Exponential Distribution
========================

This is a special case of the Gamma (and Erlang) distributions with
shape parameter :math:`\left(\alpha=1\right)` and the same location and scale parameters. The standard form is
therefore ( :math:`x\geq0` )

.. math::
   :nowrap:

    \begin{eqnarray*} f\left(x\right) & = & e^{-x}\\
    F\left(x\right) & = & \gamma\left(1,x\right) = 1-e^{-x}\\
    G\left(q\right) & = & -\log\left(1-q\right)\end{eqnarray*}

.. math::

     \mu_{n}^{\prime}=n!

.. math::

     M\left(t\right)=\frac{1}{1-t}

.. math::
   :nowrap:

    \begin{eqnarray*} \mu & = & 1\\ \mu_{2} & = & 1\\ \gamma_{1} & = & 2\\ \gamma_{2} & = & 6\\ m_{d} & = & 0\end{eqnarray*}

.. math::

     h\left[X\right]=1.

Implementation: `scipy.stats.expon`