File: continuous_foldcauchy.rst

package info (click to toggle)
scipy 1.16.3-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 236,092 kB
  • sloc: cpp: 503,720; python: 345,302; ansic: 195,677; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 857; makefile: 792; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (22 lines) | stat: -rw-r--r-- 794 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

.. _continuous-foldcauchy:

Folded Cauchy Distribution
==========================

This formula can be expressed in terms of the standard formulas for
the Cauchy distribution (call the cdf :math:`C\left(x\right)` and
the pdf :math:`d\left(x\right)` ).
If :math:`Y` is cauchy then :math:`\left|Y\right|` is folded cauchy.
There is one shape parameter :math:`c` and the support is :math:`x\geq0.`

.. math::
   :nowrap:

    \begin{eqnarray*} f\left(x;c\right) & = & \frac{1}{\pi\left(1+\left(x-c\right)^{2}\right)}+\frac{1}{\pi\left(1+\left(x+c\right)^{2}\right)}\\
    F\left(x;c\right) & = & \frac{1}{\pi}\tan^{-1}\left(x-c\right)+\frac{1}{\pi}\tan^{-1}\left(x+c\right)\\
    G\left(q;c\right) & = & F^{-1}\left(q;c\right)\end{eqnarray*}

No moments

Implementation: `scipy.stats.foldcauchy`