File: continuous_lognorm.rst

package info (click to toggle)
scipy 1.16.3-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 236,092 kB
  • sloc: cpp: 503,720; python: 345,302; ansic: 195,677; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 857; makefile: 792; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (35 lines) | stat: -rw-r--r-- 1,640 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

.. _continuous-lognorm:

Log Normal (Cobb-Douglass) Distribution
=======================================

Has one shape parameter :math:`\sigma` >0. (Notice that the "Regress" :math:`A=\log S` where :math:`S` is the scale parameter and :math:`A` is the mean of the underlying normal distribution).
The support is :math:`x\geq0`.

.. math::
   :nowrap:

    \begin{eqnarray*} f\left(x;\sigma\right) & = & \frac{1}{\sigma x\sqrt{2\pi}}\exp\left(-\frac{1}{2}\left(\frac{\log x}{\sigma}\right)^{2}\right)\\
    F\left(x;\sigma\right) & = & \Phi\left(\frac{\log x}{\sigma}\right)\\
    G\left(q;\sigma\right) & = & \exp\left( \sigma\Phi^{-1}\left(q\right)\right) \end{eqnarray*}

.. math::
   :nowrap:

    \begin{eqnarray*} \mu & = & \exp\left(\sigma^{2}/2\right)\\
    \mu_{2} & = & \exp\left(\sigma^{2}\right)\left[\exp\left(\sigma^{2}\right)-1\right]\\
    \gamma_{1} & = & \sqrt{p-1}\left(2+p\right)\\
    \gamma_{2} & = & p^{4}+2p^{3}+3p^{2}-6\quad\quad p=e^{\sigma^{2}}\end{eqnarray*}

Notice that using JKB notation we have :math:`\theta=L,` :math:`\zeta=\log S` and we have given the so-called antilognormal form of the
distribution. This is more consistent with the location, scale
parameter description of general probability distributions.

.. math::

     h\left[X\right]=\frac{1}{2}\left[1+\log\left(2\pi\right)+2\log\left(\sigma\right)\right].

Also, note that if :math:`X` is a log-normally distributed random-variable with :math:`L=0` and :math:`S` and shape parameter :math:`\sigma.` Then, :math:`\log X` is normally distributed with variance :math:`\sigma^{2}` and mean :math:`\log S.`

Implementation: `scipy.stats.lognorm`