1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
.. _continuous-truncweibull_min:
Truncated Weibull Minimum Extreme Value Distribution
====================================================
A doubly truncated version of Weibull minimum extreme value distribution.
Defined for :math:`a<x<=b` and :math:`c>0`.
.. math::
:nowrap:
\begin{eqnarray*}
f\left(x;c,a,b\right) & = & \frac{cx^{c-1}\exp\left(-x^{c}\right)}{\exp\left(-a^{c}\right) - \exp\left(-b^{c}\right)} \\
F\left(x;c,a,b\right) & = & \frac{\exp\left(-a^{c}\right) - \exp\left(-x^{c}\right)}{\exp\left(-a^{c}\right) - \exp\left(-b^{c}\right)} \\
G\left(q;c,a,b\right) & = & \left[-\log\left(\left(1-q\right)\exp\left(-a^{c}\right)+q\exp\left(-b^{c}\right)\right)\right]^{1/c}
\end{eqnarray*}
.. math::
\mu_{n}^{\prime}=\frac{\exp\left(a^{c}\right)}{1-\exp\left(-b^{c}\right)}\left[\gamma\left(\frac{n}{c}+1,b^{c}\right)-\gamma\left(\frac{n}{c}+1,a^{c}\right)\right]
where :math:`\gamma\left(\right)` is the lower incomplete gamma function.
Implementation: `scipy.stats.truncweibull_min`
|