1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
---
jupytext:
text_representation:
extension: .md
format_name: myst
format_version: 0.13
jupytext_version: 1.16.1
kernelspec:
display_name: Python 3 (ipykernel)
language: python
name: python3
---
+++ {"tags": ["jupyterlite_sphinx_strip"]}
```{eval-rst}
.. notebooklite:: hypothesis_jarque_bera.md
:new_tab: True
```
(hypothesis_jarque_bera)=
+++
# Jarque-Bera goodness of fit test
Suppose we wish to infer from measurements whether the weights of adult human
males in a medical study are not normally distributed [^1]. The weights (lbs)
are recorded in the array `x` below.
```{code-cell}
import numpy as np
x = np.array([148, 154, 158, 160, 161, 162, 166, 170, 182, 195, 236])
```
The Jarque-Bera test {class}`scipy.stats.jarque_bera` begins by computing a
statistic based on the sample skewness and kurtosis.
```{code-cell}
from scipy import stats
res = stats.jarque_bera(x)
res.statistic
```
Because the normal distribution has zero skewness and zero ("excess" or
"Fisher") kurtosis, the value of this statistic tends to be low for samples
drawn from a normal distribution.
The test is performed by comparing the observed value of the statistic against
the null distribution: the distribution of statistic values derived under the
null hypothesis that the weights were drawn from a normal distribution.
For the Jarque-Bera test, the null distribution for very large samples is the
{class}`chi-squared distribution <scipy.stats.chi2>` with two degrees of freedom.
```{code-cell}
import matplotlib.pyplot as plt
dist = stats.chi2(df=2)
jb_val = np.linspace(0, 11, 100)
pdf = dist.pdf(jb_val)
fig, ax = plt.subplots(figsize=(8, 5))
def jb_plot(ax): # we'll reuse this
ax.plot(jb_val, pdf)
ax.set_title("Jarque-Bera Null Distribution")
ax.set_xlabel("statistic")
ax.set_ylabel("probability density")
jb_plot(ax)
plt.show();
```
The comparison is quantified by the p-value: the proportion of values in the
null distribution greater than or equal to the observed value of the statistic.
```{code-cell}
fig, ax = plt.subplots(figsize=(8, 5))
jb_plot(ax)
pvalue = dist.sf(res.statistic)
annotation = (f'p-value={pvalue:.6f}\n(shaded area)')
props = dict(facecolor='black', width=1, headwidth=5, headlength=8)
_ = ax.annotate(annotation, (7.5, 0.01), (8, 0.05), arrowprops=props)
i = jb_val >= res.statistic # indices of more extreme statistic values
ax.fill_between(jb_val[i], y1=0, y2=pdf[i])
ax.set_xlim(0, 11)
ax.set_ylim(0, 0.3)
plt.show()
```
```{code-cell}
res.pvalue
```
If the p-value is "small" - that is, if there is a low probability of sampling
data from a normally distributed population that produces such an extreme value
of the statistic - this may be taken as evidence against the null hypothesis in
favor of the alternative: the weights were not drawn from a normal distribution.
Note that:
- The inverse is not true; that is, the test is not used to provide evidence for
the null hypothesis.
- The threshold for values that will be considered "small" is a choice that
should be made before the data is analyzed [^2] with consideration of the
risks of both false positives (incorrectly rejecting the null hypothesis) and
false negatives (failure to reject a false null hypothesis).
Note that the chi-squared distribution provides an asymptotic approximation
of the null distribution; it is only accurate for samples with many
observations. For small samples like ours, {class}`scipy.stats.monte_carlo_test`
may provide a more accurate, albeit stochastic, approximation of the
exact p-value.
```{code-cell}
def statistic(x, axis):
# underlying calculation of the Jarque Bera statistic
s = stats.skew(x, axis=axis)
k = stats.kurtosis(x, axis=axis)
return x.shape[axis]/6 * (s**2 + k**2/4)
res = stats.monte_carlo_test(x, stats.norm.rvs, statistic,
alternative='greater')
fig, ax = plt.subplots(figsize=(8, 5))
jb_plot(ax)
ax.hist(res.null_distribution, np.linspace(0, 10, 50),
density=True)
ax.legend(['asymptotic approximation (many observations)',
'Monte Carlo approximation (11 observations)'])
plt.show()
```
```{code-cell}
res.pvalue
```
Furthermore, despite their stochastic nature, p-values computed in this way
can be used to exactly control the rate of false rejections of the null
hypothesis [^3].
## References
[^1]: Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for
normality (complete samples). Biometrika, 52(3/4), 591-611
[^2]: Phipson, B. and Smyth, G. K. (2010) Permutation P-values Should Never Be
Zero: Calculating Exact P-values When Permutations Are Randomly Drawn.
Statistical Applications in Genetics and Molecular Biology 9.1.
[^3]: Panagiotakos, D. B. (2008). The value of p-value in biomedical research.
The open cardiovascular medicine journal, 2, 97.
|