1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
|
# The paths to MPS file instances assumes that this is run in the
# root directory of HiGHS
import numpy as np
import highspy
hscb = highspy.cb
h = highspy.Highs()
# h.setOptionValue("log_to_console", True)
inf = highspy.kHighsInf
alt_inf = h.getInfinity()
print('highspy.kHighsInf = ', inf,
'h.getInfinity() = ', alt_inf)
# ~~~
# Read in and solve avgas
h.readModel("check/instances/avgas.mps")
# h.writeModel("ml.mps")
h.run()
lp = h.getLp()
num_nz = h.getNumNz()
print("LP has ", lp.num_col_,
" columns", lp.num_row_,
" rows and ", num_nz, " nonzeros.")
# ~~~
# Clear so that incumbent model is empty
h.clear()
# Now define the blending model as a HighsLp instance
lp = highspy.HighsLp()
lp.num_col_ = 2
lp.num_row_ = 2
lp.sense_ = highspy.ObjSense.kMaximize
lp.col_cost_ = np.array([8, 10], dtype=np.double)
lp.col_lower_ = np.array([0, 0], dtype=np.double)
lp.col_upper_ = np.array([inf, inf], dtype=np.double)
lp.row_lower_ = np.array([-inf, -inf], dtype=np.double)
lp.row_upper_ = np.array([120, 210], dtype=np.double)
lp.a_matrix_.start_ = np.array([0, 2, 4])
lp.a_matrix_.index_ = np.array([0, 1, 0, 1])
lp.a_matrix_.value_ = np.array([0.3, 0.7, 0.5, 0.5], dtype=np.double)
h.passModel(lp)
# Solve
h.run()
# Print solution
solution = h.getSolution()
basis = h.getBasis()
info = h.getInfo()
model_status = h.getModelStatus()
print("Model status = ", h.modelStatusToString(model_status))
print("Optimal objective = ", info.objective_function_value)
print("Iteration count = ", info.simplex_iteration_count)
print(
"Primal solution status = ", h.solutionStatusToString(
info.primal_solution_status)
)
print("Dual solution status = ",
h.solutionStatusToString(info.dual_solution_status))
print("Basis validity = ", h.basisValidityToString(info.basis_validity))
num_var = h.getNumCol()
num_row = h.getNumRow()
print("Variables")
for icol in range(num_var):
print(icol, solution.col_value[icol],
h.basisStatusToString(basis.col_status[icol]))
print("Constraints")
for irow in range(num_row):
print(irow, solution.row_value[irow],
h.basisStatusToString(basis.row_status[irow]))
# ~~~
# Clear so that incumbent model is empty
h.clear()
# Now define the test-semi-definite0 model (from TestQpSolver.cpp)
# as a HighsModel instance
model = highspy.HighsModel()
model.lp_.model_name_ = "semi-definite"
model.lp_.num_col_ = 3
model.lp_.num_row_ = 1
model.lp_.col_cost_ = np.array([1.0, 1.0, 2.0], dtype=np.double)
model.lp_.col_lower_ = np.array([0, 0, 0], dtype=np.double)
model.lp_.col_upper_ = np.array([inf, inf, inf], dtype=np.double)
model.lp_.row_lower_ = np.array([2], dtype=np.double)
model.lp_.row_upper_ = np.array([inf], dtype=np.double)
model.lp_.a_matrix_.format_ = highspy.MatrixFormat.kColwise
model.lp_.a_matrix_.start_ = np.array([0, 1, 2, 3])
model.lp_.a_matrix_.index_ = np.array([0, 0, 0])
model.lp_.a_matrix_.value_ = np.array([1.0, 1.0, 1.0], dtype=np.double)
model.hessian_.dim_ = model.lp_.num_col_
model.hessian_.start_ = np.array([0, 2, 2, 3])
model.hessian_.index_ = np.array([0, 2, 2])
model.hessian_.value_ = np.array([2.0, -1.0, 1.0], dtype=np.double)
print("test-semi-definite0 as HighsModel")
h.passModel(model)
h.run()
# ~~~
# Clear so that incumbent model is empty
h.clear()
num_col = 3
num_row = 1
sense = highspy.ObjSense.kMinimize
offset = 0
col_cost = np.array([1.0, 1.0, 2.0], dtype=np.double)
col_lower = np.array([0, 0, 0], dtype=np.double)
col_upper = np.array([inf, inf, inf], dtype=np.double)
row_lower = np.array([2], dtype=np.double)
row_upper = np.array([inf], dtype=np.double)
a_matrix_format = highspy.MatrixFormat.kColwise
a_matrix_start = np.array([0, 1, 2, 3])
a_matrix_index = np.array([0, 0, 0])
a_matrix_value = np.array([1.0, 1.0, 1.0], dtype=np.double)
a_matrix_num_nz = a_matrix_start[num_col]
hessian_format = highspy.HessianFormat.kTriangular
hessian_start = np.array([0, 2, 2, 3])
hessian_index = np.array([0, 2, 2])
hessian_value = np.array([2.0, -1.0, 1.0], dtype=np.double)
hessian_num_nz = hessian_start[num_col]
integrality = np.array([0, 0, 0])
print("test-semi-definite0 as pointers")
h.passModel(
num_col,
num_row,
a_matrix_num_nz,
hessian_num_nz,
a_matrix_format,
hessian_format,
sense,
offset,
col_cost,
col_lower,
col_upper,
row_lower,
row_upper,
a_matrix_start,
a_matrix_index,
a_matrix_value,
hessian_start,
hessian_index,
hessian_value,
integrality,
)
h.run()
h.writeSolution("", 1)
# ~~~
# Clear so that incumbent model is empty
h.clear()
print("25fv47 as HighsModel")
h.readModel("check/instances/25fv47.mps")
h.presolve()
presolved_lp = h.getPresolvedLp()
# Create a HiGHS instance to solve the presolved LP
print('\nCreate Highs instance to solve presolved LP')
h1 = highspy.Highs()
h1.passModel(presolved_lp)
# Get and set options
options = h1.getOptions()
options.presolve = "off"
options.solver = "ipm"
h1.passOptions(options)
# can be used to check option values
# h1.writeOptions("")
h1.run()
solution = h1.getSolution()
basis = h1.getBasis()
print("Crossover, then postsolve using solution and basis from another instance")
h.postsolve(solution, basis)
# Get solution
info = h.getInfo()
model_status = h.getModelStatus()
print("Model status = ", h.modelStatusToString(model_status))
print("Optimal objective = ", info.objective_function_value)
print("Iteration count = ", info.simplex_iteration_count)
run_time = h.getRunTime()
print("Total HiGHS run time is ", run_time)
# Get an optimal basis
# Clear so that incumbent model is empty
h.clear()
print("25fv47 as HighsModel")
h.readModel("check/instances/25fv47.mps")
h.run()
simplex_iteration_count = h.getInfo().simplex_iteration_count
print("From initial basis, simplex iteration count =", simplex_iteration_count)
basis = h.getBasis()
h.clearSolver()
h.setBasis(basis)
h.run()
simplex_iteration_count = h.getInfo().simplex_iteration_count
print("From optimal basis, simplex iteration count =", simplex_iteration_count)
status = h.setBasis()
h.run()
simplex_iteration_count = h.getInfo().simplex_iteration_count
print("From logical basis, simplex iteration count =", simplex_iteration_count)
# Define a callback
def user_interrupt_callback(
callback_type,
message,
data_out,
data_in,
user_callback_data
):
# dev_run = True
dev_run = False
# Constants for iteration limits or objective targets, adjust as required
SIMPLEX_ITERATION_LIMIT = 100
IPM_ITERATION_LIMIT = 100
EGOUT_OBJECTIVE_TARGET = 1.0
# Callback for MIP Improving Solution
if callback_type == hscb.HighsCallbackType.kCallbackMipImprovingSolution:
# Assuming it is a list or array
assert user_callback_data is not None, "User callback data is None!"
local_callback_data = user_callback_data[0]
if dev_run:
print(f"userCallback(type {callback_type};")
print(f"data {local_callback_data:.4g}): {message}")
print(f"with objective {data_out.objective_function_value}")
print(f"and solution[0] = {data_out.mip_solution[0]}")
# Check and update the objective function value
assert (
local_callback_data >= data_out.objective_function_value
), "Objective function value is invalid!"
user_callback_data[0] = data_out.objective_function_value
else:
# Various other callback types
if callback_type == hscb.HighsCallbackType.kCallbackLogging:
if dev_run:
print(f"userInterruptCallback(type {callback_type}): {message}")
elif callback_type == hscb.HighsCallbackType.kCallbackSimplexInterrupt:
if dev_run:
print(f"userInterruptCallback(type {callback_type}): {message}")
print("with iteration count = ",
data_out.simplex_iteration_count)
data_in.user_interrupt = (
data_out.simplex_iteration_count > SIMPLEX_ITERATION_LIMIT
)
elif callback_type == hscb.HighsCallbackType.kCallbackIpmInterrupt:
if dev_run:
print(f"userInterruptCallback(type {callback_type}): {message}")
print(f"with iteration count = {data_out.ipm_iteration_count}")
data_in.user_interrupt = (
data_out.ipm_iteration_count > IPM_ITERATION_LIMIT
)
elif callback_type == hscb.HighsCallbackType.kCallbackMipInterrupt:
if dev_run:
print(f"userInterruptCallback(type {callback_type}): {message}")
print(f"Dual bound = {data_out.mip_dual_bound:.4g}")
print(f"Primal bound = {data_out.mip_primal_bound:.4g}")
print(f"Gap = {data_out.mip_gap:.4g}")
print(f"Objective = {data_out.objective_function_value:.4g}")
data_in.user_interrupt = (
data_out.objective_function_value < EGOUT_OBJECTIVE_TARGET
)
# Define model
h.addVar(-inf, inf)
h.addVar(-inf, inf)
h.changeColsCost(2, np.array([0, 1]), np.array([0, 1], dtype=np.double))
num_cons = 2
lower = np.array([2, 0], dtype=np.double)
upper = np.array([inf, inf], dtype=np.double)
num_new_nz = 4
starts = np.array([0, 2])
indices = np.array([0, 1, 0, 1])
values = np.array([-1, 1, 1, 1], dtype=np.double)
h.addRows(num_cons, lower, upper, num_new_nz, starts, indices, values)
# Set callback and run
h.setCallback(user_interrupt_callback, None)
h.startCallback(hscb.HighsCallbackType.kCallbackLogging)
h.run()
h.stopCallback(hscb.HighsCallbackType.kCallbackLogging)
# Get solution
num_var = h.getNumCol()
solution = h.getSolution()
basis = h.getBasis()
info = h.getInfo()
model_status = h.getModelStatus()
print("Model status = ", h.modelStatusToString(model_status))
print("Optimal objective = ", info.objective_function_value)
print("Iteration count = ", info.simplex_iteration_count)
print(
"Primal solution status = ", h.solutionStatusToString(
info.primal_solution_status)
)
print("Dual solution status = ",
h.solutionStatusToString(info.dual_solution_status))
print("Basis validity = ", h.basisValidityToString(info.basis_validity))
print("Variables:")
for icol in range(0, 5):
print(icol, solution.col_value[icol],
h.basisStatusToString(basis.col_status[icol]))
print("...")
for icol in range(num_var-2, num_var):
print(icol, solution.col_value[icol],
h.basisStatusToString(basis.col_status[icol]))
print("computing IIS for lp-incompatible-bounds")
"""
LP has row0 and col2 with inconsistent bounds.
When prioritising rows, row0 and its constituent columns (1, 2) should be found
When prioritising columns, col2 and its constituent rows (0, 1) should be found
"""
# Define the LP
lp = highspy.HighsLp()
lp.num_col_ = 3
lp.num_row_ = 2
lp.col_cost_ = np.array([0, 0, 0], dtype=np.double)
lp.col_lower_ = np.array([0, 0, 0], dtype=np.double)
lp.col_upper_ = np.array([1, 1, -1], dtype=np.double)
lp.row_lower_ = np.array([1, 0], dtype=np.double)
lp.row_upper_ = np.array([0, 1], dtype=np.double)
lp.a_matrix_.format_ = highspy.MatrixFormat.kRowwise
lp.a_matrix_.start_ = np.array([0, 2, 4])
lp.a_matrix_.index_ = np.array([1, 2, 0, 2])
lp.a_matrix_.value_ = np.array([1, 1, 1, 1], dtype=np.double)
h.clear()
h.passModel(lp)
h.run()
assert h.getModelStatus() == highspy.HighsModelStatus.kInfeasible
# Set IIS strategy to row priority and get IIS
h.setOptionValue("iis_strategy", highspy.IisStrategy.kIisStrategyFromLpRowPriority)
iis = highspy.HighsIis()
assert h.getIis(iis) == highspy.HighsStatus.kOk
assert len(iis.col_index) == 0
assert len(iis.row_index) == 1
assert iis.row_index[0] == 0
assert iis.row_bound[0] == highspy.IisBoundStatus.kIisBoundStatusBoxed
# Set IIS strategy to column priority and get IIS
h.setOptionValue("iis_strategy", highspy.IisStrategy.kIisStrategyFromLpColPriority)
iis.invalidate()
assert h.getIis(iis) == highspy.HighsStatus.kOk
assert len(iis.col_index) == 1
assert len(iis.row_index) == 0
assert iis.col_index[0] == 2
assert iis.col_bound[0] == highspy.IisBoundStatus.kIisBoundStatusBoxed
print("IIS computation completed successfully")
print("computing feasibility relaxation")
h.clear()
inf = h.getInfinity()
num_col = 2
num_row = 3
num_nz = 6
a_format = highspy.MatrixFormat.kColwise
sense = highspy.ObjSense.kMinimize
offset = 0
col_cost = np.array([1, -2], dtype=np.double)
col_lower = np.array([5, -inf], dtype=np.double)
col_upper = np.array([inf, inf], dtype=np.double)
row_lower = np.array([2, -inf, -inf], dtype=np.double)
row_upper = np.array([inf, 1, 20], dtype=np.double)
a_start = np.array([0, 3])
a_index = np.array([0, 1, 2, 0, 1, 2])
a_value = np.array([-1, -3, 20, 21, 2, 1], dtype=np.double)
integrality = np.array([highspy.HighsVarType.kInteger, highspy.HighsVarType.kInteger])
h.passModel(
num_col, num_row, num_nz, a_format, sense, offset,
col_cost, col_lower, col_upper,
row_lower, row_upper,
a_start, a_index, a_value,
integrality
)
assert h.feasibilityRelaxation(1, 1, 1) == highspy.HighsStatus.kOk
info = h.getInfo()
objective_function_value = info.objective_function_value
solution = h.getSolution()
assert abs(objective_function_value - 5) < 1e-6, f"Expected objective value 5, got {objective_function_value}"
assert abs(solution.col_value[0] - 1) < 1e-6, f"Expected solution[0] = 1, got {solution.col_value[0]}"
assert abs(solution.col_value[1] - 1) < 1e-6, f"Expected solution[1] = 1, got {solution.col_value[1]}"
print("Feasibility Relaxation Test Passed")
# Using infeasible LP from AMPL documentation
h = highspy.Highs()
lp = highspy.HighsLp()
lp.num_col_ = 2
lp.num_row_ = 3
lp.col_cost_ = np.array([1, -2], dtype=np.double)
lp.col_lower_ = np.array([5, -h.getInfinity()], dtype=np.double)
lp.col_upper_ = np.array([h.getInfinity(), h.getInfinity()], dtype=np.double)
lp.col_names_ = ["X", "Y"]
lp.row_lower_ = np.array([2, -h.getInfinity(), -h.getInfinity()], dtype=np.double)
lp.row_upper_ = np.array([h.getInfinity(), 1, 20], dtype=np.double)
lp.row_names_ = ["R0", "R1", "R2"]
lp.a_matrix_.start_ = np.array([0, 3, 6])
lp.a_matrix_.index_ = np.array([0, 1, 2, 0, 1, 2])
lp.a_matrix_.value_ = np.array([-1, -3, 20, 21, 2, 1], dtype=np.double)
lp.integrality_ = np.array([highspy.HighsVarType.kInteger, highspy.HighsVarType.kInteger])
h.setOptionValue("output_flag", False)
h.passModel(lp)
# Vanilla feasibility relaxation
print("Vanilla feasibility relaxation")
h.feasibilityRelaxation(1, 1, 1)
solution = h.getSolution()
print(f"Solution: ({solution.col_value[0]}, {solution.col_value[1]})")
print(f"Slacks: ({solution.row_value[0] - lp.row_lower_[0]}, "
f"{lp.row_upper_[1] - solution.row_value[1]}, "
f"{lp.row_upper_[2] - solution.row_value[2]})")
# Respect all lower bounds
print("\nRespect all lower bounds")
h.feasibilityRelaxation(-1, 1, 1)
solution = h.getSolution()
print(f"Solution: ({solution.col_value[0]}, {solution.col_value[1]})")
print(f"Slacks: ({solution.row_value[0] - lp.row_lower_[0]}, "
f"{lp.row_upper_[1] - solution.row_value[1]}, "
f"{lp.row_upper_[2] - solution.row_value[2]})")
# Local penalties RHS {1, -1, 10}
print("\nLocal penalties RHS {1, -1, 10}")
local_rhs_penalty = np.array([1, -1, 10], dtype=np.double)
h.feasibilityRelaxation(1, 1, 0, None, None, local_rhs_penalty)
solution = h.getSolution()
print(f"Solution: ({solution.col_value[0]}, {solution.col_value[1]})")
print(f"Slacks: ({solution.row_value[0] - lp.row_lower_[0]}, "
f"{lp.row_upper_[1] - solution.row_value[1]}, "
f"{lp.row_upper_[2] - solution.row_value[2]})")
# Local penalties RHS {10, 1, 1}
print("\nLocal penalties RHS {10, 1, 1}")
local_rhs_penalty = np.array([10, 1, 1], dtype=np.double)
h.feasibilityRelaxation(1, 1, 0, None, None, local_rhs_penalty)
solution = h.getSolution()
print(f"Solution: ({solution.col_value[0]}, {solution.col_value[1]})")
print(f"Slacks: ({solution.row_value[0] - lp.row_lower_[0]}, "
f"{lp.row_upper_[1] - solution.row_value[1]}, "
f"{lp.row_upper_[2] - solution.row_value[2]})")
iis = highspy.HighsIis()
assert h.getIis(iis) == highspy.HighsStatus.kOk
print("\nIIS")
print("row_index:", iis.row_index)
print("row_bound:", iis.row_bound)
print("col_index:", iis.col_index)
print("col_bound:", iis.col_bound)
|