File: plot_highs_log.py

package info (click to toggle)
scipy 1.16.3-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 236,092 kB
  • sloc: cpp: 503,720; python: 345,302; ansic: 195,677; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 857; makefile: 792; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (134 lines) | stat: -rw-r--r-- 4,973 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import re
import matplotlib.pyplot as plt
import numpy as np
import math as math


def parse_highs_log(log_file_path):
    last_full_entry = []
    current_entry = []
    found_solution = False

    with open(log_file_path, "r") as f:
        for line in f:
            if "Running HiGHS" in line:
                if found_solution:
                    last_full_entry = current_entry
                current_entry = [line]
                found_solution = False
            else:
                current_entry.append(line)
                if "Writing the solution to" in line:
                    found_solution = True

    if not last_full_entry:
        last_full_entry = current_entry

    if not last_full_entry:
        return None, None, None, None, None, None

    time_values, best_bound_values, best_sol_values, in_queue_values, expl_values, gap_values = (
        [],
        [],
        [],
        [],
        [],
        [],
    )
    for line in last_full_entry:
        match = re.search(r"\dk?\s+\d+\.\ds$", line)

        if not match:
            continue

        tokens = line.split()
        if len(tokens) == 13:
            tokens = tokens[1:]
        assert len(tokens) == 12, f"{line}"

        in_queue_values.append(float(tokens[1]))  # InQueue
        expl_values.append(float(tokens[3].replace("%", "")))  # Expl.%
        best_bound_values.append(float(tokens[4].replace("inf", "nan")))  # Best Bound
        best_sol_values.append(float(tokens[5].replace("inf", "nan")))  # Best Sol
        gap_values.append(
            float(tokens[6].replace("%", "").replace("inf", "nan").replace("Large", "nan"))
        )  # Gap%
        time_values.append(float(tokens[11].replace("s", "")))  # Time

    return time_values, best_bound_values, best_sol_values, in_queue_values, expl_values, gap_values


def plot_highs_log(
    time_values, best_bound_values, best_sol_values, in_queue_values, expl_values, gap_values
):
    fig, ax1 = plt.subplots(figsize=(10, 6))

    best_bound_colour = "blue"
    best_solution_colour = "green"
    in_queue_colour = "red"
    explored_colour = "purple"
    gap_colour = "orange"

    # Plot Objective Bounds
    ax1.plot(time_values, best_bound_values, label="Best Bound", color=best_bound_colour)
    ax1.plot(time_values, best_sol_values, label="Best Solution", color=best_solution_colour)
    ax1.set_xlabel("Time (seconds)")
    ax1.set_ylabel("Objective Bounds", color=best_bound_colour, labelpad=15)
    ax1.tick_params(axis="y", labelcolor=best_bound_colour)

    # Limit y-axis to the range between min and max of the non-NaN values
    valid_gap_index = next(i for i, gap in enumerate(gap_values) if not np.isnan(gap))
    min_y = min(best_bound_values[valid_gap_index], best_sol_values[valid_gap_index])
    max_y = max(best_bound_values[valid_gap_index], best_sol_values[valid_gap_index])
    padding = (max_y - min_y) * 0.1
    ax1.set_ylim(min_y - padding, max_y + padding)

    # Add second y-axis for InQueue values
    ax2 = ax1.twinx()
    ax2.plot(time_values, in_queue_values, label="InQueue", color=in_queue_colour)
#    ax2.set_ylabel("InQueue", color=in_queue_colour, loc="top", labelpad=12)
    ax2.yaxis.label.set_rotation(0)
    ax2.tick_params(axis="y", labelcolor=in_queue_colour)

    # Add third y-axis for Explored % values (scaled)
    ax3 = ax1.twinx()
    ax3.spines["right"].set_position(("outward", 50))
    ax3.plot(time_values, expl_values, label="Explored %", color=explored_colour)
#    ax3.set_ylabel("Expl.%", color=explored_colour, loc="top", labelpad=10)
    ax3.yaxis.label.set_rotation(0)
    ax3.tick_params(axis="y", labelcolor=explored_colour)

    # Add fourth y-axis for Gap % values (scaled)
    ax4 = ax1.twinx()
    ax4.spines["right"].set_position(("outward", 90))
    ax4.plot(time_values, gap_values, label="Gap %", color=gap_colour, linestyle="--", linewidth=1)
#    ax4.set_ylabel("Gap.%", color=gap_colour, loc="top", labelpad=22)
    ax4.yaxis.label.set_rotation(0)
    ax4.tick_params(axis="y", labelcolor=gap_colour)

    # Plot vertical hash lines where Best Solution changes
    for i in range(1, len(best_sol_values)):
        # Print if change detected and not NaN
        if (best_sol_values[i] != best_sol_values[i - 1]) and not(math.isnan(best_sol_values[i])):
            ax1.axvline(x=time_values[i], color="grey", linestyle="--", linewidth=0.5)

    # Shift plot area left to make room on the right for the three y-axis labels.
    fig.subplots_adjust(left=0.08, right=0.85)

    # Set up legend
    fig.legend(loc="lower center", ncols=5)

    # Show plot
    plt.title("HiGHS MIP Log Analysis", pad=20)
    plt.show()


#log_file_path = "/path/to/your/logfile.log"
log_file_path = "HiGHS.log"
time_values, best_bound_values, best_sol_values, in_queue_values, expl_values, gap_values = (
    parse_highs_log(log_file_path)
)

plot_highs_log(
    time_values, best_bound_values, best_sol_values, in_queue_values, expl_values, gap_values
)