1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
.. _tutorial-interpolate_regular_grid_interpolator:
.. currentmodule:: scipy.interpolate
=====================================================================================
Multivariate data interpolation on a regular grid (:class:`RegularGridInterpolator`)
=====================================================================================
Suppose you have N-dimensional data on a regular grid, and you
want to interpolate it. In such a case, :class:`RegularGridInterpolator` can be
useful. Several interpolation strategies are supported: nearest-neighbor,
linear, and tensor product splines of odd degree.
Strictly speaking, this class efficiently handles data given on *rectilinear*
grids: hypercubic lattices with possibly unequal spacing between points.
The number of points per dimension can be different for different dimensions.
The following example demonstrates its use, and compares the interpolation results
using each method.
.. plot::
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import RegularGridInterpolator
Suppose we want to interpolate this 2-D function.
>>> def F(u, v):
... return u * np.cos(u * v) + v * np.sin(u * v)
Suppose we only know some data on a regular grid.
>>> fit_points = [np.linspace(0, 3, 8), np.linspace(0, 3, 11)]
>>> values = F(*np.meshgrid(*fit_points, indexing='ij'))
Creating test points and true values for evaluations.
>>> ut, vt = np.meshgrid(np.linspace(0, 3, 80), np.linspace(0, 3, 80), indexing='ij')
>>> true_values = F(ut, vt)
>>> test_points = np.array([ut.ravel(), vt.ravel()]).T
We can create the interpolator and interpolate test points using each method.
>>> interp = RegularGridInterpolator(fit_points, values)
>>> fig, axes = plt.subplots(2, 3, figsize=(10, 6))
>>> axes = axes.ravel()
>>> fig_index = 0
>>> for method in ['linear', 'nearest', 'slinear', 'cubic', 'quintic']:
... im = interp(test_points, method=method).reshape(80, 80)
... axes[fig_index].imshow(im)
... axes[fig_index].set_title(method)
... axes[fig_index].axis("off")
... fig_index += 1
>>> axes[fig_index].imshow(true_values)
>>> axes[fig_index].set_title("True values")
>>> fig.tight_layout()
>>> fig.show()
As expected, the higher degree spline interpolations are closest to the
true values, though are more expensive to compute than with `linear`
or `nearest`. The `slinear` interpolation also matches the `linear`
interpolation.
If your data is such that spline methods produce ringing, you may consider
using ``method="pchip"``, which uses the tensor product of PCHIP interpolators,
a `PchipInterpolator` per dimension.
If you prefer a functional interface opposed to explicitly creating a class instance,
the `interpn` convenience function offers the equivalent functionality.
Specifically, these two forms give identical results:
>>> from scipy.interpolate import interpn
>>> rgi = RegularGridInterpolator(fit_points, values)
>>> result_rgi = rgi(test_points)
and
>>> result_interpn = interpn(fit_points, values, test_points)
>>> np.allclose(result_rgi, result_interpn, atol=1e-15)
True
For data confined to an (N-1)-dimensional subspace of N-dimensional space, i.e.
when one of the grid axes has length 1, the extrapolation along this axis is
controlled by the ``fill_value`` keyword parameter:
>>> x = np.array([0, 5, 10])
>>> y = np.array([0])
>>> data = np.array([[0], [5], [10]])
>>> rgi = RegularGridInterpolator((x, y), data,
... bounds_error=False, fill_value=None)
>>> rgi([(2, 0), (2, 1), (2, -1)]) # extrapolates the value on the axis
array([2., 2., 2.])
>>> rgi.fill_value = -101
>>> rgi([(2, 0), (2, 1), (2, -1)])
array([2., -101., -101.])
.. note::
If the input data is such that input dimensions have incommensurate
units and differ by many orders of magnitude, the interpolant may have
numerical artifacts. Consider rescaling the data before interpolating.
.. _tutorial-interpolate_RGI_batching:
Batch dimensions of ``values``
==============================
Suppose you have a vector function :math:`f(x) = y`, where :math:`x` and :math:`y` are
vectors, potentially of different lengths, and you want to sample the function on a grid
of :math:`x` values. One way to address this is to use the fact that `RegularGridInterpolator`
allows ``values`` with *trailing* dimensions.
In accordance with how :ref:`1D interpolators
interpret multidimensional arrays <tutorial-interpolate_batching>`, the interpretation is
that the first :math:`N` dimensions of the ``values`` arrays are data dimensions
(i.e. they correspond to the points defined by the ``grid`` argument), and the *trailing*
dimensions are batch axes. Note that this disagrees with a usual NumPy broadcasting
conventions, where broadcasting proceeds along the *leading* dimensions.
To illustrate:
>>> n = 5 # the number of batch components
>>> # make a 3D grid
>>> x1 = np.linspace(-np.pi, np.pi, 10)
>>> x2 = np.linspace(0.0, np.pi, 15)
>>> x3 = np.linspace(0.0, np.pi/2, 20)
>>> points = (x1, x2, x3)
>>>
>>> # define a function and sample it on the grid
>>> def f(x1, x2, x3, n):
... lst = [np.sin(np.pi*x1/2) * np.exp(x2/2) + x3 + i for i in range(n)]
... return np.asarray(lst)
>>>
>>> X1, X2, X3 = np.meshgrid(x1, x2, x3, indexing="ij")
>>> values = f(X1, X2, X3, n)
>>> values.shape
(5, 10, 15, 20)
>>>
>>> # prepare the data and construct the interpolator
>>> values = np.moveaxis(values, 0, -1)
>>> values.shape
(10, 15, 20, 5) # the batch dimension is 5
>>> rgi = RegularGridInterpolator(points, values)
>>>
>>> # Coordinates to compute the interpolation at
>>> x = np.asarray([0.2, np.pi/2.1, np.pi/4.1])
>>>
# evaluate
>>> rgi(x).shape
(1, 5)
In this example, we evaluated a batch of :math:`n=5` functions on a
three-dimensional grid. In general, multiple batching dimensions are allowed, and the
shape of the result follows by appending the batching shape (in this example, ``(5,)``)
to the shape of the input ``x`` (in this example, `(1,)``).
.. _tutorial-interpolate_cartesian-grids:
Uniformly spaced data
=====================
If you are dealing with data on Cartesian grids with integer coordinates, e.g.
resampling image data, these routines may not be the optimal choice. Consider
using `scipy.ndimage.map_coordinates` instead.
For floating-point data on grids with equal spacing, ``map_coordinates`` can
be easily wrapped into a `RegularGridInterpolator` look-alike. The following is
a bare-bones example originating from `the Johanness Buchner's
'regulargrid' package <https://github.com/JohannesBuchner/regulargrid/>`_::
class CartesianGridInterpolator:
def __init__(self, points, values, method='linear'):
self.limits = np.array([[min(x), max(x)] for x in points])
self.values = np.asarray(values, dtype=float)
self.order = {'linear': 1, 'cubic': 3, 'quintic': 5}[method]
def __call__(self, xi):
"""
`xi` here is an array-like (an array or a list) of points.
Each "point" is an ndim-dimensional array_like, representing
the coordinates of a point in ndim-dimensional space.
"""
# transpose the xi array into the ``map_coordinates`` convention
# which takes coordinates of a point along columns of a 2D array.
xi = np.asarray(xi).T
# convert from data coordinates to pixel coordinates
ns = self.values.shape
coords = [(n-1)*(val - lo) / (hi - lo)
for val, n, (lo, hi) in zip(xi, ns, self.limits)]
# interpolate
return map_coordinates(self.values, coords,
order=self.order,
cval=np.nan) # fill_value
This wrapper can be used as a(n almost) drop-in replacement for the
`RegularGridInterpolator`:
>>> x, y = np.arange(5), np.arange(6)
>>> xx, yy = np.meshgrid(x, y, indexing='ij')
>>> values = xx**3 + yy**3
>>> rgi = RegularGridInterpolator((x, y), values, method='linear')
>>> rgi([[1.5, 1.5], [3.5, 2.6]])
array([ 9. , 64.9])
>>> cgi = CartesianGridInterpolator((x, y), values, method='linear')
>>> cgi([[1.5, 1.5], [3.5, 2.6]])
array([ 9. , 64.9])
Note that the example above uses the ``map_coordinates`` boundary conditions.
Thus, results of the ``cubic`` and ``quintic`` interpolations may differ from
those of the ``RegularGridInterpolator``.
Refer to `scipy.ndimage.map_coordinates` documentation for more details on
boundary conditions and other additional arguments.
Finally, we note that this simplified example assumes that the input data is
given in the ascending order.
|