1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
(interp-transition-guide)=
# `interp2d` transition guide
This page contains three sets of demonstrations:
- lower-level FITPACK replacements for {class}`scipy.interpolate.interp2d` for legacy bug-for-bug compatible {class}`scipy.interpolate.interp2d` replacements;
- recommended replacements for {class}`scipy.interpolate.interp2d` for use in new code;
- a demonstration of failure modes of 2D FITPACK-based linear interpolation and recommended replacements.
## 1. How to transition away from using `interp2d`
`interp2d` silently switches between interpolation on a 2D regular grid and interpolating 2D scattered data. The switch is based on the lengths of the (raveled) `x`, `y`, and `z` arrays. In short, for regular grid use {class}`scipy.interpolate.RectBivariateSpline`; for scattered interpolation, use the `bisprep/bisplev` combo. Below we give examples of the literal point-for-point transition, which should preserve the `interp2d` results exactly.
### 1.1 `interp2d` on a regular grid
We start from the (slightly modified) docstring example.
```
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import interp2d, RectBivariateSpline
>>> x = np.arange(-5.01, 5.01, 0.25)
>>> y = np.arange(-5.01, 7.51, 0.25)
>>> xx, yy = np.meshgrid(x, y)
>>> z = np.sin(xx**2 + 2.*yy**2)
>>> f = interp2d(x, y, z, kind='cubic')
```
This is the "regular grid" code path, because
```
>>> z.size == len(x) * len(y)
True
```
Also, note that `x.size != y.size`:
```
>>> x.size, y.size
(41, 51)
```
Now, let's build a convenience function to construct the interpolator and plot it.
```
>>> def plot(f, xnew, ynew):
... fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
... znew = f(xnew, ynew)
... ax1.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-')
... im = ax2.imshow(znew)
... plt.colorbar(im, ax=ax2)
... plt.show()
... return znew
...
>>> xnew = np.arange(-5.01, 5.01, 1e-2)
>>> ynew = np.arange(-5.01, 7.51, 1e-2)
>>> znew_i = plot(f, xnew, ynew)
```
![Two plots side by side. On the left, the plot shows points with coordinates
(x, z[0, :]) as red circles, and the interpolation function generated as a blue
curve. On the right, the plot shows a 2D projection of the generated
interpolation function.](plots/output_10_0.png)
#### Replacement: Use `RectBivariateSpline`, the result is identical
Note the transposes: first, in the constructor, second, you need to transpose the result of the evaluation. This is to undo the transposes `interp2d` does.
```
>>> r = RectBivariateSpline(x, y, z.T)
>>> rt = lambda xnew, ynew: r(xnew, ynew).T
>>> znew_r = plot(rt, xnew, ynew)
```
![Two plots side by side. On the left, the plot shows points with coordinates
(x, z[0, :]) as red circles, and the interpolation function generated as a blue
curve. On the right, the plot shows a 2D projection of the generated
interpolation function.](plots/output_12_0.png)
```
>>> from numpy.testing import assert_allclose
>>> assert_allclose(znew_i, znew_r, atol=1e-14)
```
#### Interpolation order: linear, cubic etc
`interp2d` defaults to `kind="linear"`, which is linear in both directions, `x-` and `y-`.
`RectBivariateSpline`, on the other hand, defaults to cubic interpolation,
`kx=3, ky=3`.
Here is the exact equivalence:
| interp2d | RectBivariateSpline |
|----------|--------------------|
| no kwargs | kx = 1, ky = 1 |
| kind='linear' | kx = 1, ky = 1 |
| kind='cubic' | kx = 3, ky = 3 |
### 1.2. `interp2d` with full coordinates of points (scattered interpolation)
Here, we flatten the meshgrid from the previous exercise to illustrate the functionality.
```
>>> xxr = xx.ravel()
>>> yyr = yy.ravel()
>>> zzr = z.ravel()
>>> f = interp2d(xxr, yyr, zzr, kind='cubic')
```
Note that this the "not regular grid" code path, meant for scattered data, with `len(x) == len(y) == len(z)`.
```
>>> len(xxr) == len(yyr) == len(zzr)
True
```
```
>>> xnew = np.arange(-5.01, 5.01, 1e-2)
>>> ynew = np.arange(-5.01, 7.51, 1e-2)
>>> znew_i = plot(f, xnew, ynew)
```
![Two plots side by side. On the left, the plot shows points with coordinates
(x, z[0, :]) as red circles, and the interpolation function generated as a blue
curve. On the right, the plot shows a 2D projection of the generated
interpolation function.](plots/output_18_0.png)
#### Replacement: Use {class}`scipy.interpolate.bisplrep` / {class}`scipy.interpolate.bisplev` directly
```
>>> from scipy.interpolate import bisplrep, bisplev
>>> tck = bisplrep(xxr, yyr, zzr, kx=3, ky=3, s=0)
# convenience: make up a callable from bisplev
>>> ff = lambda xnew, ynew: bisplev(xnew, ynew, tck).T # Note the transpose, to mimic what interp2d does
>>> znew_b = plot(ff, xnew, ynew)
```
![Two plots side by side. On the left, the plot shows points with coordinates
(x, z[0, :]) as red circles, and the interpolation function generated as a blue
curve. On the right, the plot shows a 2D projection of the generated
interpolation function.](plots/output_20_0.png)
```
>>> assert_allclose(znew_i, znew_b, atol=1e-15)
```
#### Interpolation order: linear, cubic etc
`interp2d` defaults to `kind="linear"`, which is linear in both directions, `x-` and `y-`.
`bisplrep`, on the other hand, defaults to cubic interpolation,
`kx=3, ky=3`.
Here is the exact equivalence:
| `interp2d` | `bisplrep` |
|----------|--------------------|
| no kwargs | kx = 1, ky = 1 |
| kind='linear' | kx = 1, ky = 1 |
| kind='cubic' | kx = 3, ky = 3 |
## 2. Alternative to `interp2d`: regular grid
For new code, the recommended alternative is `RegularGridInterpolator`. It is an independent implementation, not based on FITPACK. Supports nearest, linear interpolation and odd-order tensor product splines.
The spline knots are guaranteed to coincide with the data points.
Note that, here:
1. the tuple argument, is `(x, y)`
2. `z` array needs a transpose
3. the keyword name is *method*, not *kind*
4. `bounds_error` argument is `True` by default.
```
>>> from scipy.interpolate import RegularGridInterpolator as RGI
>>> r = RGI((x, y), z.T, method='linear', bounds_error=False)
```
Evaluation: create a 2D meshgrid. Use indexing='ij' and `sparse=True` to save some memory:
```
>>> xxnew, yynew = np.meshgrid(xnew, ynew, indexing='ij', sparse=True)
```
Evaluate, note the tuple argument:
```
>>> znew_reggrid = r((xxnew, yynew))
```
```
>>> fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
# Again, note the transpose to undo the `interp2d` convention
>>> znew_reggrid_t = znew_reggrid.T
>>> ax1.plot(x, z[0, :], 'ro-', xnew, znew_reggrid_t[0, :], 'b-')
>>> im = ax2.imshow(znew_reggrid_t)
>>> plt.colorbar(im, ax=ax2)
```
![Two plots side by side. On the left, the plot shows points with coordinates
(x, z[0, :]) as red circles, and the interpolation function generated as a blue
curve. On the right, the plot shows a 2D projection of the generated
interpolation function.](plots/output_28_1.png)
## 3. Scattered 2D linear interpolation: prefer `LinearNDInterpolator` to `SmoothBivariateSpline` or `bisplrep`
For 2D scattered linear interpolation, both `SmoothBivariateSpline` and `biplrep` may either emit warnings, or fail to interpolate the data, or produce splines which with knots away from the data points. Instead, prefer `LinearNDInterpolator`, which is based on triangulating the data via `QHull`.
```
# TestSmoothBivariateSpline::test_integral
>>> from scipy.interpolate import SmoothBivariateSpline, LinearNDInterpolator
>>> x = np.array([1,1,1,2,2,2,4,4,4])
>>> y = np.array([1,2,3,1,2,3,1,2,3])
>>> z = np.array([0,7,8,3,4,7,1,3,4])
```
Now, use the linear interpolation over Qhull-based triangulation of data:
```
>>> xy = np.c_[x, y] # or just list(zip(x, y))
>>> lut2 = LinearNDInterpolator(xy, z)
>>> X = np.linspace(min(x), max(x))
>>> Y = np.linspace(min(y), max(y))
>>> X, Y = np.meshgrid(X, Y)
```
The result is easy to understand and interpret:
```
>>> fig = plt.figure()
>>> ax = fig.add_subplot(projection='3d')
>>> ax.plot_wireframe(X, Y, lut2(X, Y))
>>> ax.scatter(x, y, z, 'o', color='k', s=48)
```

Note that `bisplrep` does something different! It may place spline knots outside of the data.
For illustration, consider the same data from the previous example:
```
>>> tck = bisplrep(x, y, z, kx=1, ky=1, s=0)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(projection='3d')
>>> xx = np.linspace(min(x), max(x))
>>> yy = np.linspace(min(y), max(y))
>>> X, Y = np.meshgrid(xx, yy)
>>> Z = bisplev(xx, yy, tck)
>>> Z = Z.reshape(*X.shape).T
>>> ax.plot_wireframe(X, Y, Z, rstride=2, cstride=2)
>>> ax.scatter(x, y, z, 'o', color='k', s=48)
```

Also, `SmoothBivariateSpline` fails to interpolate the data. Again, use the same data from the previous example.
```
>>> lut = SmoothBivariateSpline(x, y, z, kx=1, ky=1, s=0)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(projection='3d')
>>> xx = np.linspace(min(x), max(x))
>>> yy = np.linspace(min(y), max(y))
>>> X, Y = np.meshgrid(xx, yy)
>>> ax.plot_wireframe(X, Y, lut(xx, yy).T, rstride=4, cstride=4)
>>> ax.scatter(x, y, z, 'o', color='k', s=48)
```

Note that both `SmoothBivariateSpline` and `bisplrep` results have artifacts, unlike the `LinearNDInterpolator`'s. Issues illustrated here were reported for linear interpolation, however the FITPACK knot-selection mechanism does not guarantee to avoid either of these issues for higher-order (e.g. cubic) spline surfaces.
|