File: continuous_gausshyper.rst

package info (click to toggle)
scipy 1.17.0-1exp2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 235,340 kB
  • sloc: cpp: 506,914; python: 357,038; ansic: 215,028; javascript: 89,566; fortran: 19,308; cs: 3,081; f90: 1,150; sh: 860; makefile: 519; pascal: 284; lisp: 134; xml: 56; perl: 51
file content (20 lines) | stat: -rw-r--r-- 813 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

.. _continuous-gausshyper:

Gauss Hypergeometric Distribution
=================================

The four shape parameters are :math:`\alpha>0`, :math:`\beta>0`,
:math:`-\infty < \gamma < \infty`, and :math:`z > -1`.
The support is :math:`x\in\left[0,1\right]`.

.. math::

     \text{Let }C=\frac{1}{B\left(\alpha,\beta\right)\,_{2}F_{1}\left(\gamma,\alpha;\alpha+\beta;-z\right)}

.. math::
   :nowrap:

    \begin{eqnarray*} f\left(x;\alpha,\beta,\gamma,z\right) & = & Cx^{\alpha-1}\frac{\left(1-x\right)^{\beta-1}}{\left(1+zx\right)^{\gamma}}\\ \mu_{n}^{\prime} & = & \frac{B\left(n+\alpha,\beta\right)}{B\left(\alpha,\beta\right)}\frac{\,_{2}F_{1}\left(\gamma,\alpha+n;\alpha+\beta+n;-z\right)}{\,_{2}F_{1}\left(\gamma,\alpha;\alpha+\beta;-z\right)}\end{eqnarray*}

Implementation: `scipy.stats.gausshyper`