1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
Sparse eigenvalue problems with ARPACK
======================================
.. sectionauthor:: Jake Vanderplas <vanderplas@astro.washington.edu>
.. sectionauthor:: Matteo Ravasi <matteoravasi@gmail.com>
.. currentmodule:: scipy.sparse.linalg
Introduction
------------
ARPACK [1]_ is a Fortran package which provides routines for quickly finding a few
eigenvalues/eigenvectors of large sparse matrices. In order to find these
solutions, it requires only left-multiplication by the matrix in question.
This operation is performed through a *reverse-communication* interface. The
result of this structure is that ARPACK is able to find eigenvalues and
eigenvectors of any linear function mapping a vector to a vector.
All of the functionality provided in ARPACK is contained within the two
high-level interfaces :func:`scipy.sparse.linalg.eigs` and
:func:`scipy.sparse.linalg.eigsh`. :func:`eigs`
provides interfaces for finding the
eigenvalues/vectors of real or complex nonsymmetric square matrices, while
:func:`eigsh` provides interfaces for real-symmetric or complex-hermitian
matrices.
Basic functionality
-------------------
ARPACK can solve either standard eigenvalue problems of the form
.. math::
A \mathbf{x} = \lambda \mathbf{x}
or general eigenvalue problems of the form
.. math::
A \mathbf{x} = \lambda M \mathbf{x}.
The power of ARPACK is that it can compute only a specified subset of
eigenvalue/eigenvector pairs. This is accomplished through the keyword
``which``. The following values of ``which`` are available:
* ``which = 'LM'`` : Eigenvalues with largest magnitude (``eigs``, ``eigsh``),
that is, largest eigenvalues in the euclidean norm of complex numbers.
* ``which = 'SM'`` : Eigenvalues with smallest magnitude (``eigs``, ``eigsh``),
that is, smallest eigenvalues in the euclidean norm of complex numbers.
* ``which = 'LR'`` : Eigenvalues with largest real part (``eigs``).
* ``which = 'SR'`` : Eigenvalues with smallest real part (``eigs``).
* ``which = 'LI'`` : Eigenvalues with largest imaginary part (``eigs``).
* ``which = 'SI'`` : Eigenvalues with smallest imaginary part (``eigs``).
* ``which = 'LA'`` : Eigenvalues with largest algebraic value (``eigsh``),
that is, largest eigenvalues inclusive of any negative sign.
* ``which = 'SA'`` : Eigenvalues with smallest algebraic value (``eigsh``),
that is, smallest eigenvalues inclusive of any negative sign.
* ``which = 'BE'`` : Eigenvalues from both ends of the spectrum (``eigsh``).
Note that ARPACK is generally better at finding extremal eigenvalues, that
is, eigenvalues with large magnitudes. In particular, using ``which = 'SM'``
may lead to slow execution time and/or anomalous results. A better approach
is to use *shift-invert mode*.
Shift-invert mode
-----------------
Shift-invert mode relies on the following observation. For the generalized
eigenvalue problem
.. math::
A \mathbf{x} = \lambda M \mathbf{x},
it can be shown that
.. math::
(A - \sigma M)^{-1} M \mathbf{x} = \nu \mathbf{x},
where
.. math::
\nu = \frac{1}{\lambda - \sigma}.
Examples
--------
Imagine you'd like to find the smallest and largest eigenvalues and the
corresponding eigenvectors for a large matrix. ARPACK can handle many
forms of input: dense matrices ,such as `numpy.ndarray` instances, sparse
matrices, such as :func:`scipy.sparse.csr_matrix`, or a general linear operator
derived from :func:`scipy.sparse.linalg.LinearOperator`. For this example, for
simplicity, we'll construct a symmetric, positive-definite matrix.
>>> import numpy as np
>>> from scipy.linalg import eig, eigh
>>> from scipy.sparse.linalg import eigs, eigsh
>>> np.set_printoptions(suppress=True)
>>>
>>> np.random.seed(0)
>>> X = np.random.random((100,100)) - 0.5
>>> X = np.dot(X, X.T) #create a symmetric matrix
We now have a symmetric matrix ``X``, with which to test the routines. First,
compute a standard eigenvalue decomposition using ``eigh``:
>>> evals_all, evecs_all = eigh(X)
As the dimension of ``X`` grows, this routine becomes very slow. Especially,
if only a few eigenvectors and eigenvalues are needed, ``ARPACK`` can be a
better option. First let's compute the largest eigenvalues (``which = 'LM'``)
of ``X`` and compare them to the known results:
>>> evals_large, evecs_large = eigsh(X, 3, which='LM')
>>> print(evals_all[-3:])
[29.1446102 30.05821805 31.19467646]
>>> print(evals_large)
[29.1446102 30.05821805 31.19467646]
>>> print(np.dot(evecs_large.T, evecs_all[:,-3:]))
array([[-1. 0. 0.], # may vary (signs)
[ 0. 1. 0.],
[-0. 0. -1.]])
The results are as expected. ARPACK recovers the desired eigenvalues and they
match the previously known results. Furthermore, the eigenvectors are
orthogonal, as we'd expect. Now, let's attempt to solve for the eigenvalues
with smallest magnitude:
>>> evals_small, evecs_small = eigsh(X, 3, which='SM')
Traceback (most recent call last): # may vary (convergence)
...
scipy.sparse.linalg.eigen.arpack.arpack.ArpackNoConvergence:
ARPACK error -1: No convergence (1001 iterations, 0/3 eigenvectors converged)
Oops. We see that, as mentioned above, ``ARPACK`` is not quite as adept at
finding small eigenvalues. There are a few ways this problem can be
addressed. We could increase the tolerance (``tol``) to lead to faster
convergence:
>>> evals_small, evecs_small = eigsh(X, 3, which='SM', tol=1E-2)
>>> evals_all[:3]
array([0.0003783, 0.00122714, 0.00715878])
>>> evals_small
array([0.00037831, 0.00122714, 0.00715881])
>>> np.dot(evecs_small.T, evecs_all[:,:3])
array([[ 0.99999999 0.00000024 -0.00000049], # may vary (signs)
[-0.00000023 0.99999999 0.00000056],
[ 0.00000031 -0.00000037 0.99999852]])
This works, but we lose the precision in the results. Another option is
to increase the maximum number of iterations (``maxiter``) from 1000 to 5000:
>>> evals_small, evecs_small = eigsh(X, 3, which='SM', maxiter=5000)
>>> evals_all[:3]
array([0.0003783, 0.00122714, 0.00715878])
>>> evals_small
array([0.0003783, 0.00122714, 0.00715878])
>>> np.dot(evecs_small.T, evecs_all[:,:3])
array([[ 1. 0. 0.], # may vary (signs)
[-0. 1. 0.],
[ 0. 0. -1.]])
We get the results we'd hoped for, but the computation time is much longer.
Fortunately, ``ARPACK`` contains a mode that allows a quick determination of
non-external eigenvalues: *shift-invert mode*. As mentioned above, this
mode involves transforming the eigenvalue problem to an equivalent problem
with different eigenvalues. In this case, we hope to find eigenvalues near
zero, so we'll choose ``sigma = 0``. The transformed eigenvalues will
then satisfy :math:`\nu = 1/(\lambda - \sigma) = 1/\lambda`, so our
small eigenvalues :math:`\lambda` become large eigenvalues :math:`\nu`.
>>> evals_small, evecs_small = eigsh(X, 3, sigma=0, which='LM')
>>> evals_all[:3]
array([0.0003783, 0.00122714, 0.00715878])
>>> evals_small
array([0.0003783, 0.00122714, 0.00715878])
>>> np.dot(evecs_small.T, evecs_all[:,:3])
array([[ 1. 0. 0.], # may vary (signs)
[ 0. -1. -0.],
[-0. -0. 1.]])
We get the results we were hoping for, with much less computational time.
Note that the transformation from :math:`\nu \to \lambda` takes place
entirely in the background. The user need not worry about the details.
The shift-invert mode provides more than just a fast way to obtain a few
small eigenvalues. Say, you
desire to find internal eigenvalues and eigenvectors, e.g., those nearest to
:math:`\lambda = 1`. Simply set ``sigma = 1`` and ARPACK will take care of
the rest:
>>> evals_mid, evecs_mid = eigsh(X, 3, sigma=1, which='LM')
>>> i_sort = np.argsort(abs(1. / (1 - evals_all)))[-3:]
>>> evals_all[i_sort]
array([1.16577199, 0.85081388, 1.06642272])
>>> evals_mid
array([0.85081388, 1.06642272, 1.16577199])
>>> print(np.dot(evecs_mid.T, evecs_all[:,i_sort]))
array([[-0. 1. 0.], # may vary (signs)
[-0. -0. 1.],
[ 1. 0. 0.]]
The eigenvalues come out in a different order, but they're all there.
Note that the shift-invert mode requires the internal solution of a matrix
inverse. This is taken care of automatically by ``eigsh`` and `eigs`,
but the operation can also be specified by the user. See the docstring of
:func:`scipy.sparse.linalg.eigsh` and
:func:`scipy.sparse.linalg.eigs` for details.
Use of LinearOperator
---------------------
We consider now the case where you'd like to avoid creating a dense matrix
and use :func:`scipy.sparse.linalg.LinearOperator` instead. Our first
linear operator applies element-wise multiplication between the input vector
and a vector :math:`\mathbf{d}` provided by the user to the operator itself.
This operator mimics a diagonal matrix with the elements of :math:`\mathbf{d}`
along the main diagonal and it has the main benefit that the forward and
adjoint operations are simple element-wise multiplications other
than matrix-vector multiplications. For a diagonal matrix, we expect the
eigenvalues to be equal to the elements along the main diagonal, in this case
:math:`\mathbf{d}`. The eigenvalues and eigenvectors obtained with ``eigsh``
are compared to those obtained by using ``eigh`` when applied to
the dense matrix:
>>> from scipy.sparse.linalg import LinearOperator
>>> class Diagonal(LinearOperator):
... def __init__(self, diag, dtype='float32'):
... self.diag = diag
... self.shape = (len(self.diag), len(self.diag))
... self.dtype = np.dtype(dtype)
... def _matvec(self, x):
... return self.diag*x
... def _rmatvec(self, x):
... return self.diag*x
>>> np.random.seed(0)
>>> N = 100
>>> d = np.random.normal(0, 1, N).astype(np.float64)
>>> D = np.diag(d)
>>> Dop = Diagonal(d, dtype=np.float64)
>>> evals_all, evecs_all = eigh(D)
>>> evals_large, evecs_large = eigsh(Dop, 3, which='LA', maxiter=1e3)
>>> evals_all[-3:]
array([1.9507754 , 2.2408932 , 2.26975462])
>>> evals_large
array([1.9507754 , 2.2408932 , 2.26975462])
>>> print(np.dot(evecs_large.T, evecs_all[:,-3:]))
array([[-1. 0. 0.], # may vary (signs)
[-0. -1. 0.],
[ 0. 0. -1.]]
In this case, we have created a quick and easy ``Diagonal`` operator.
The external library `PyLops <https://pylops.readthedocs.io>`_ provides
similar capabilities in the `Diagonal <https://pylops.readthedocs.io/en/
latest/api/generated/pylops.Diagonal.html#pylops.Diagonal>`_ operator,
as well as several other operators.
Finally, we consider a linear operator that mimics the application of a
first-derivative stencil. In this case, the operator is equivalent to a real
nonsymmetric matrix. Once again, we compare the estimated eigenvalues
and eigenvectors with those from a dense matrix that applies the
same first derivative to an input signal:
>>> class FirstDerivative(LinearOperator):
... def __init__(self, N, dtype='float32'):
... self.N = N
... self.shape = (self.N, self.N)
... self.dtype = np.dtype(dtype)
... def _matvec(self, x):
... y = np.zeros(self.N, self.dtype)
... y[1:-1] = (0.5*x[2:]-0.5*x[0:-2])
... return y
... def _rmatvec(self, x):
... y = np.zeros(self.N, self.dtype)
... y[0:-2] = y[0:-2] - (0.5*x[1:-1])
... y[2:] = y[2:] + (0.5*x[1:-1])
... return y
>>> N = 21
>>> D = np.diag(0.5*np.ones(N-1), k=1) - np.diag(0.5*np.ones(N-1), k=-1)
>>> D[0] = D[-1] = 0 # take away edge effects
>>> Dop = FirstDerivative(N, dtype=np.float64)
>>> evals_all, evecs_all = eig(D)
>>> evals_large, evecs_large = eigs(Dop, 4, which='LI')
>>> evals_all_imag = evals_all.imag
>>> isort_imag = np.argsort(np.abs(evals_all_imag))
>>> evals_all_imag = evals_all_imag[isort_imag]
>>> evals_large_imag = evals_large.imag
>>> isort_imag = np.argsort(np.abs(evals_large_imag))
>>> evals_large_imag = evals_large_imag[isort_imag]
>>> evals_all_imag[-4:]
array([-0.95105652, 0.95105652, -0.98768834, 0.98768834])
>>> evals_large_imag
array([0.95105652, -0.95105652, 0.98768834, -0.98768834])
Note that the eigenvalues of this operator are all imaginary. Moreover,
the keyword ``which='LI'`` of :func:`scipy.sparse.linalg.eigs` produces
the eigenvalues with largest absolute imaginary part (both
positive and negative). Again, a more advanced implementation of the
first-derivative operator is available in the
`PyLops <https://pylops.readthedocs.io>`_ library under the name of
`FirstDerivative <https://pylops.
readthedocs.io/en/latest/api/generated/pylops.FirstDerivative.html>`_
operator.
References
----------
.. [1] http://www.caam.rice.edu/software/ARPACK/
|