1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
Fourier Transforms (:mod:`scipy.fft`)
=========================================
.. sectionauthor:: SciPy Developers
.. currentmodule:: scipy.fft
.. contents::
Fourier analysis is a method for expressing a function as a sum of periodic
components, and for recovering the signal from those components. When both
the function and its Fourier transform are replaced with discretized
counterparts, it is called the discrete Fourier transform (DFT). The DFT has
become a mainstay of numerical computing in part because of a very fast
algorithm for computing it, called the Fast Fourier Transform (FFT), which was
known to Gauss (1805) and was brought to light in its current form by Cooley
and Tukey [CT65]_. Press et al. [NR07]_ provide an accessible introduction to
Fourier analysis and its applications.
Fast Fourier transforms
-----------------------
1-D discrete Fourier transforms
___________________________________________
The FFT `y[k]` of length :math:`N` of the length-:math:`N` sequence `x[n]` is
defined as
.. math::
y[k] = \sum_{n=0}^{N-1} e^{-2 \pi j \frac{k n}{N} } x[n] \, ,
and the inverse transform is defined as follows
.. math::
x[n] = \frac{1}{N} \sum_{k=0}^{N-1} e^{2 \pi j \frac{k n}{N} } y[k] \, .
These transforms can be calculated by means of :func:`fft` and :func:`ifft`,
respectively, as shown in the following example.
>>> from scipy.fft import fft, ifft
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
>>> y = fft(x)
>>> y
array([ 4.5 +0.j , 2.08155948-1.65109876j,
-1.83155948+1.60822041j, -1.83155948-1.60822041j,
2.08155948+1.65109876j])
>>> yinv = ifft(y)
>>> yinv
array([ 1.0+0.j, 2.0+0.j, 1.0+0.j, -1.0+0.j, 1.5+0.j])
From the definition of the FFT it can be seen that
.. math::
y[0] = \sum_{n=0}^{N-1} x[n] \, .
In the example
>>> np.sum(x)
4.5
which corresponds to :math:`y[0]`. For N even, the elements
:math:`y[1]...y[N/2-1]` contain the positive-frequency terms, and the elements
:math:`y[N/2]...y[N-1]` contain the negative-frequency terms, in order of
decreasingly negative frequency. For N odd, the elements
:math:`y[1]...y[(N-1)/2]` contain the positive-frequency terms, and the
elements :math:`y[(N+1)/2]...y[N-1]` contain the negative-frequency terms, in
order of decreasingly negative frequency.
In case the sequence x is real-valued, the values of :math:`y[n]` for positive
frequencies is the conjugate of the values :math:`y[n]` for negative
frequencies (because the spectrum is symmetric). Typically, only the FFT
corresponding to positive frequencies is plotted.
The example plots the FFT of the sum of two sines.
.. plot::
>>> from scipy.fft import fft, fftfreq
>>> # Number of sample points
>>> N = 600
>>> # sample spacing
>>> T = 1.0 / 800.0
>>> x = np.linspace(0.0, N*T, N, endpoint=False)
>>> y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
>>> yf = fft(y)
>>> xf = fftfreq(N, T)[:N//2]
>>> import matplotlib.pyplot as plt
>>> plt.plot(xf, 2.0/N * np.abs(yf[0:N//2]))
>>> plt.grid()
>>> plt.show()
The FFT input signal is inherently truncated. This truncation can be modeled
as multiplication of an infinite signal with a rectangular window function. In
the spectral domain this multiplication becomes convolution of the signal
spectrum with the window function spectrum, being of form :math:`\sin(x)/x`.
This convolution is the cause of an effect called spectral leakage (see
[WPW]_). Windowing the signal with a dedicated window function helps mitigate
spectral leakage. The example below uses a Blackman window from scipy.signal
and shows the effect of windowing (the zero component of the FFT has been
truncated for illustrative purposes).
.. plot::
>>> from scipy.fft import fft, fftfreq
>>> # Number of sample points
>>> N = 600
>>> # sample spacing
>>> T = 1.0 / 800.0
>>> x = np.linspace(0.0, N*T, N, endpoint=False)
>>> y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
>>> yf = fft(y)
>>> from scipy.signal import blackman
>>> w = blackman(N)
>>> ywf = fft(y*w)
>>> xf = fftfreq(N, T)[:N//2]
>>> import matplotlib.pyplot as plt
>>> plt.semilogy(xf[1:N//2], 2.0/N * np.abs(yf[1:N//2]), '-b')
>>> plt.semilogy(xf[1:N//2], 2.0/N * np.abs(ywf[1:N//2]), '-r')
>>> plt.legend(['FFT', 'FFT w. window'])
>>> plt.grid()
>>> plt.show()
In case the sequence x is complex-valued, the spectrum is no longer symmetric.
To simplify working with the FFT functions, scipy provides the following two
helper functions.
The function :func:`fftfreq` returns the FFT sample frequency points.
>>> from scipy.fft import fftfreq
>>> freq = fftfreq(8, 0.125)
>>> freq
array([ 0., 1., 2., 3., -4., -3., -2., -1.])
In a similar spirit, the function :func:`fftshift` allows swapping the lower
and upper halves of a vector, so that it becomes suitable for display.
>>> from scipy.fft import fftshift
>>> x = np.arange(8)
>>> fftshift(x)
array([4, 5, 6, 7, 0, 1, 2, 3])
The example below plots the FFT of two complex exponentials; note the
asymmetric spectrum.
.. plot::
>>> from scipy.fft import fft, fftfreq, fftshift
>>> # number of signal points
>>> N = 400
>>> # sample spacing
>>> T = 1.0 / 800.0
>>> x = np.linspace(0.0, N*T, N, endpoint=False)
>>> y = np.exp(50.0 * 1.j * 2.0*np.pi*x) + 0.5*np.exp(-80.0 * 1.j * 2.0*np.pi*x)
>>> yf = fft(y)
>>> xf = fftfreq(N, T)
>>> xf = fftshift(xf)
>>> yplot = fftshift(yf)
>>> import matplotlib.pyplot as plt
>>> plt.plot(xf, 1.0/N * np.abs(yplot))
>>> plt.grid()
>>> plt.show()
The function :func:`rfft` calculates the FFT of a real sequence and outputs the
complex FFT coefficients :math:`y[n]` for only half of the frequency range. The
remaining negative frequency components are implied by the Hermitian symmetry of
the FFT for a real input (``y[n] = conj(y[-n])``). In case of N being even:
:math:`[Re(y[0]) + 0j, y[1], ..., Re(y[N/2]) + 0j]`; in case of N being odd
:math:`[Re(y[0]) + 0j, y[1], ..., y[N/2]`. The terms shown explicitly as
:math:`Re(y[k]) + 0j` are restricted to be purely real since, by the hermitian
property, they are their own complex conjugate.
The corresponding function :func:`irfft` calculates the IFFT of the FFT
coefficients with this special ordering.
>>> from scipy.fft import fft, rfft, irfft
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5, 1.0])
>>> fft(x)
array([ 5.5 +0.j , 2.25-0.4330127j , -2.75-1.29903811j,
1.5 +0.j , -2.75+1.29903811j, 2.25+0.4330127j ])
>>> yr = rfft(x)
>>> yr
array([ 5.5 +0.j , 2.25-0.4330127j , -2.75-1.29903811j,
1.5 +0.j ])
>>> irfft(yr)
array([ 1. , 2. , 1. , -1. , 1.5, 1. ])
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
>>> fft(x)
array([ 4.5 +0.j , 2.08155948-1.65109876j,
-1.83155948+1.60822041j, -1.83155948-1.60822041j,
2.08155948+1.65109876j])
>>> yr = rfft(x)
>>> yr
array([ 4.5 +0.j , 2.08155948-1.65109876j,
-1.83155948+1.60822041j])
Notice that the :func:`rfft` of odd and even length signals are of the same shape.
By default, :func:`irfft` assumes the output signal should be of even length. And
so, for odd signals, it will give the wrong result:
>>> irfft(yr)
array([ 1.70788987, 2.40843925, -0.37366961, 0.75734049])
To recover the original odd-length signal, we **must** pass the output shape by
the `n` parameter.
>>> irfft(yr, n=len(x))
array([ 1. , 2. , 1. , -1. , 1.5])
2- and N-D discrete Fourier transforms
_________________________________________________
The functions :func:`fft2` and :func:`ifft2` provide 2-D FFT and
IFFT, respectively. Similarly, :func:`fftn` and :func:`ifftn` provide
N-D FFT, and IFFT, respectively.
For real-input signals, similarly to :func:`rfft`, we have the functions
:func:`rfft2` and :func:`irfft2` for 2-D real transforms;
:func:`rfftn` and :func:`irfftn` for N-D real transforms.
The example below demonstrates a 2-D IFFT and plots the resulting
(2-D) time-domain signals.
.. plot::
>>> from scipy.fft import ifftn
>>> import matplotlib.pyplot as plt
>>> import matplotlib.cm as cm
>>> N = 30
>>> f, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2, 3, sharex='col', sharey='row')
>>> xf = np.zeros((N,N))
>>> xf[0, 5] = 1
>>> xf[0, N-5] = 1
>>> Z = ifftn(xf)
>>> ax1.imshow(xf, cmap=cm.Reds)
>>> ax4.imshow(np.real(Z), cmap=cm.gray)
>>> xf = np.zeros((N, N))
>>> xf[5, 0] = 1
>>> xf[N-5, 0] = 1
>>> Z = ifftn(xf)
>>> ax2.imshow(xf, cmap=cm.Reds)
>>> ax5.imshow(np.real(Z), cmap=cm.gray)
>>> xf = np.zeros((N, N))
>>> xf[5, 10] = 1
>>> xf[N-5, N-10] = 1
>>> Z = ifftn(xf)
>>> ax3.imshow(xf, cmap=cm.Reds)
>>> ax6.imshow(np.real(Z), cmap=cm.gray)
>>> plt.show()
Discrete Cosine Transforms
--------------------------
SciPy provides a DCT with the function :func:`dct` and a corresponding IDCT
with the function :func:`idct`. There are 8 types of the DCT [WPC]_, [Mak]_;
however, only the first 4 types are implemented in scipy. "The" DCT generally
refers to DCT type 2, and "the" Inverse DCT generally refers to DCT type 3. In
addition, the DCT coefficients can be normalized differently (for most types,
scipy provides ``None`` and ``ortho``). Two parameters of the dct/idct
function calls allow setting the DCT type and coefficient normalization.
For a single dimension array x, dct(x, norm='ortho') is equal to
MATLAB dct(x).
Type I DCT
__________
SciPy uses the following definition of the unnormalized DCT-I
(``norm=None``):
.. math::
y[k] = x_0 + (-1)^k x_{N-1} + 2\sum_{n=1}^{N-2} x[n]
\cos\left(\frac{\pi nk}{N-1}\right),
\qquad 0 \le k < N.
Note that the DCT-I is only supported for input size > 1.
Type II DCT
___________
SciPy uses the following definition of the unnormalized DCT-II
(``norm=None``):
.. math::
y[k] = 2 \sum_{n=0}^{N-1} x[n] \cos \left({\pi(2n+1)k \over 2N} \right)
\qquad 0 \le k < N.
In case of the normalized DCT (``norm='ortho'``), the DCT coefficients
:math:`y[k]` are multiplied by a scaling factor `f`:
.. math::
f = \begin{cases} \sqrt{1/(4N)}, & \text{if $k = 0$} \\ \sqrt{1/(2N)},
& \text{otherwise} \end{cases} \, .
In this case, the DCT "base functions" :math:`\phi_k[n] = 2 f \cos
\left({\pi(2n+1)k \over 2N} \right)` become orthonormal:
.. math::
\sum_{n=0}^{N-1} \phi_k[n] \phi_l[n] = \delta_{lk}.
Type III DCT
____________
SciPy uses the following definition of the unnormalized DCT-III
(``norm=None``):
.. math::
y[k] = x_0 + 2 \sum_{n=1}^{N-1} x[n] \cos\left({\pi n(2k+1) \over 2N}\right)
\qquad 0 \le k < N,
or, for ``norm='ortho'``:
.. math::
y[k] = {x_0\over\sqrt{N}} + {2\over\sqrt{N}} \sum_{n=1}^{N-1} x[n]
\cos\left({\pi n(2k+1) \over 2N}\right) \qquad 0 \le k < N.
Type IV DCT
___________
SciPy uses the following definition of the unnormalized DCT-IV
(``norm=None``):
.. math::
y[k] = 2 \sum_{n=0}^{N-1} x[n] \cos\left({\pi (2n+1)(2k+1) \over 4N}\right)
\qquad 0 \le k < N,
or, for ``norm='ortho'``:
.. math::
y[k] = \sqrt{2\over N}\sum_{n=0}^{N-1} x[n] \cos\left({\pi (2n+1)(2k+1) \over 4N}\right)
\qquad 0 \le k < N
DCT and IDCT
____________
The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a
factor of `2N`. The orthonormalized DCT-III is exactly the inverse of the
orthonormalized DCT- II. The function :func:`idct` performs the mappings between
the DCT and IDCT types, as well as the correct normalization.
The following example shows the relation between DCT and IDCT for different
types and normalizations.
>>> from scipy.fft import dct, idct
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
The DCT-II and DCT-III are each other's inverses, so for an orthonormal transform
we return back to the original signal.
>>> dct(dct(x, type=2, norm='ortho'), type=3, norm='ortho')
array([ 1. , 2. , 1. , -1. , 1.5])
Doing the same under default normalization, however, we pick up an extra scaling
factor of :math:`2N=10` since the forward transform is unnormalized.
>>> dct(dct(x, type=2), type=3)
array([ 10., 20., 10., -10., 15.])
For this reason, we should use the function `idct` using the same type for both,
giving a correctly normalized result.
>>> # Normalized inverse: no scaling factor
>>> idct(dct(x, type=2), type=2)
array([ 1. , 2. , 1. , -1. , 1.5])
Analogous results can be seen for the DCT-I, which is its own inverse up to a
factor of :math:`2(N-1)`.
>>> dct(dct(x, type=1, norm='ortho'), type=1, norm='ortho')
array([ 1. , 2. , 1. , -1. , 1.5])
>>> # Unnormalized round-trip via DCT-I: scaling factor 2*(N-1) = 8
>>> dct(dct(x, type=1), type=1)
array([ 8. , 16., 8. , -8. , 12.])
>>> # Normalized inverse: no scaling factor
>>> idct(dct(x, type=1), type=1)
array([ 1. , 2. , 1. , -1. , 1.5])
And for the DCT-IV, which is also its own inverse up to a factor of :math:`2N`.
>>> dct(dct(x, type=4, norm='ortho'), type=4, norm='ortho')
array([ 1. , 2. , 1. , -1. , 1.5])
>>> # Unnormalized round-trip via DCT-IV: scaling factor 2*N = 10
>>> dct(dct(x, type=4), type=4)
array([ 10., 20., 10., -10., 15.])
>>> # Normalized inverse: no scaling factor
>>> idct(dct(x, type=4), type=4)
array([ 1. , 2. , 1. , -1. , 1.5])
Example
_______
The DCT exhibits the "energy compaction property", meaning that for many
signals only the first few DCT coefficients have significant magnitude.
Zeroing out the other coefficients leads to a small reconstruction error, a
fact which is exploited in lossy signal compression (e.g. JPEG compression).
The example below shows a signal x and two reconstructions (:math:`x_{20}` and
:math:`x_{15}`) from the signal's DCT coefficients. The signal :math:`x_{20}`
is reconstructed from the first 20 DCT coefficients, :math:`x_{15}` is
reconstructed from the first 15 DCT coefficients. It can be seen that the
relative error of using 20 coefficients is still very small (~0.1%), but
provides a five-fold compression rate.
.. plot::
>>> from scipy.fft import dct, idct
>>> import matplotlib.pyplot as plt
>>> N = 100
>>> t = np.linspace(0,20,N, endpoint=False)
>>> x = np.exp(-t/3)*np.cos(2*t)
>>> y = dct(x, norm='ortho')
>>> window = np.zeros(N)
>>> window[:20] = 1
>>> yr = idct(y*window, norm='ortho')
>>> sum(abs(x-yr)**2) / sum(abs(x)**2)
0.0009872817275276098
>>> plt.plot(t, x, '-bx')
>>> plt.plot(t, yr, 'ro')
>>> window = np.zeros(N)
>>> window[:15] = 1
>>> yr = idct(y*window, norm='ortho')
>>> sum(abs(x-yr)**2) / sum(abs(x)**2)
0.06196643004256714
>>> plt.plot(t, yr, 'g+')
>>> plt.legend(['x', '$x_{20}$', '$x_{15}$'])
>>> plt.grid()
>>> plt.show()
Discrete Sine Transforms
------------------------
SciPy provides a DST [Mak]_ with the function :func:`dst` and a corresponding IDST
with the function :func:`idst`.
There are, theoretically, 8 types of the DST for different combinations of
even/odd boundary conditions and boundary offsets [WPS]_, only the first 4
types are implemented in scipy.
Type I DST
__________
DST-I assumes the input is odd around n=-1 and n=N. SciPy uses the following
definition of the unnormalized DST-I (``norm=None``):
.. math::
y[k] = 2\sum_{n=0}^{N-1} x[n] \sin\left( \pi {(n+1) (k+1)}\over{N+1}
\right), \qquad 0 \le k < N.
Note also that the DST-I is only supported for input size > 1. The
(unnormalized) DST-I is its own inverse, up to a factor of `2(N+1)`.
Type II DST
___________
DST-II assumes the input is odd around n=-1/2 and even around n=N. SciPy uses
the following definition of the unnormalized DST-II (``norm=None``):
.. math::
y[k] = 2 \sum_{n=0}^{N-1} x[n] \sin\left( {\pi (n+1/2)(k+1)} \over N
\right), \qquad 0 \le k < N.
Type III DST
____________
DST-III assumes the input is odd around n=-1 and even around n=N-1. SciPy uses
the following definition of the unnormalized DST-III (``norm=None``):
.. math::
y[k] = (-1)^k x[N-1] + 2 \sum_{n=0}^{N-2} x[n] \sin \left( {\pi
(n+1)(k+1/2)} \over N \right), \qquad 0 \le k < N.
Type IV DST
___________
SciPy uses the following definition of the unnormalized DST-IV
(``norm=None``):
.. math::
y[k] = 2 \sum_{n=0}^{N-1} x[n] \sin\left({\pi (2n+1)(2k+1) \over 4N}\right)
\qquad 0 \le k < N,
or, for ``norm='ortho'``:
.. math::
y[k] = \sqrt{2\over N}\sum_{n=0}^{N-1} x[n] \sin\left({\pi (2n+1)(2k+1) \over 4N}\right)
\qquad 0 \le k < N,
DST and IDST
____________
The following example shows the relation between DST and IDST for
different types and normalizations.
>>> from scipy.fft import dst, idst
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
The DST-II and DST-III are each other's inverses, so for an orthonormal transform
we return back to the original signal.
>>> dst(dst(x, type=2, norm='ortho'), type=3, norm='ortho')
array([ 1. , 2. , 1. , -1. , 1.5])
Doing the same under default normalization, however, we pick up an extra scaling
factor of :math:`2N=10` since the forward transform is unnormalized.
>>> dst(dst(x, type=2), type=3)
array([ 10., 20., 10., -10., 15.])
For this reason, we should use the function `idst` using the same type for both,
giving a correctly normalized result.
>>> idst(dst(x, type=2), type=2)
array([ 1. , 2. , 1. , -1. , 1.5])
Analogous results can be seen for the DST-I, which is its own inverse up to a
factor of :math:`2(N-1)`.
>>> dst(dst(x, type=1, norm='ortho'), type=1, norm='ortho')
array([ 1. , 2. , 1. , -1. , 1.5])
>>> # scaling factor 2*(N+1) = 12
>>> dst(dst(x, type=1), type=1)
array([ 12., 24., 12., -12., 18.])
>>> # no scaling factor
>>> idst(dst(x, type=1), type=1)
array([ 1. , 2. , 1. , -1. , 1.5])
And for the DST-IV, which is also its own inverse up to a factor of :math:`2N`.
>>> dst(dst(x, type=4, norm='ortho'), type=4, norm='ortho')
array([ 1. , 2. , 1. , -1. , 1.5])
>>> # scaling factor 2*N = 10
>>> dst(dst(x, type=4), type=4)
array([ 10., 20., 10., -10., 15.])
>>> # no scaling factor
>>> idst(dst(x, type=4), type=4)
array([ 1. , 2. , 1. , -1. , 1.5])
References
----------
.. [CT65] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
machine calculation of complex Fourier series," *Math. Comput.*
19: 297-301.
.. [NR07] Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P.,
2007, *Numerical Recipes: The Art of Scientific Computing*, ch.
12-13. Cambridge Univ. Press, Cambridge, UK.
.. [Mak] J. Makhoul, 1980, 'A Fast Cosine Transform in One and Two Dimensions',
`IEEE Transactions on acoustics, speech and signal processing`
vol. 28(1), pp. 27-34, :doi:`10.1109/TASSP.1980.1163351`
.. [WPW] https://en.wikipedia.org/wiki/Window_function
.. [WPC] https://en.wikipedia.org/wiki/Discrete_cosine_transform
.. [WPS] https://en.wikipedia.org/wiki/Discrete_sine_transform
|