File: integrate.rst

package info (click to toggle)
scipy 1.6.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 132,464 kB
  • sloc: python: 207,830; ansic: 92,105; fortran: 76,906; cpp: 68,145; javascript: 32,742; makefile: 422; pascal: 421; sh: 158
file content (759 lines) | stat: -rwxr-xr-x 27,693 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
Integration (:mod:`scipy.integrate`)
====================================

.. sectionauthor:: Travis E. Oliphant

.. currentmodule:: scipy.integrate

The :mod:`scipy.integrate` sub-package provides several integration
techniques including an ordinary differential equation integrator. An
overview of the module is provided by the help command:

.. literalinclude:: examples/4-1


General integration (:func:`quad`)
----------------------------------

The function :obj:`quad` is provided to integrate a function of one
variable between two points. The points can be :math:`\pm\infty`
(:math:`\pm` ``inf``) to indicate infinite limits. For example,
suppose you wish to integrate a bessel function ``jv(2.5, x)`` along
the interval :math:`[0, 4.5].`

.. math::

    I=\int_{0}^{4.5}J_{2.5}\left(x\right)\, dx.


This could be computed using :obj:`quad`:

    >>> import scipy.integrate as integrate
    >>> import scipy.special as special
    >>> result = integrate.quad(lambda x: special.jv(2.5,x), 0, 4.5)
    >>> result
    (1.1178179380783249, 7.8663172481899801e-09)

    >>> from numpy import sqrt, sin, cos, pi
    >>> I = sqrt(2/pi)*(18.0/27*sqrt(2)*cos(4.5) - 4.0/27*sqrt(2)*sin(4.5) +
    ...                 sqrt(2*pi) * special.fresnel(3/sqrt(pi))[0])
    >>> I
    1.117817938088701

    >>> print(abs(result[0]-I))
    1.03761443881e-11

The first argument to quad is a "callable" Python object (i.e., a
function, method, or class instance). Notice the use of a lambda-
function in this case as the argument. The next two arguments are the
limits of integration. The return value is a tuple, with the first
element holding the estimated value of the integral and the second
element holding an upper bound on the error. Notice, that in this
case, the true value of this integral is

.. math::

    I=\sqrt{\frac{2}{\pi}}\left(\frac{18}{27}\sqrt{2}\cos\left(4.5\right)-\frac{4}{27}\sqrt{2}\sin\left(4.5\right)+\sqrt{2\pi}\textrm{Si}\left(\frac{3}{\sqrt{\pi}}\right)\right),

where

.. math::

    \textrm{Si}\left(x\right)=\int_{0}^{x}\sin\left(\frac{\pi}{2}t^{2}\right)\, dt.

is the Fresnel sine integral. Note that the numerically-computed integral is
within :math:`1.04\times10^{-11}` of the exact result --- well below the
reported error bound.


If the function to integrate takes additional parameters, they can be provided
in the `args` argument. Suppose that the following integral shall be calculated:

.. math::

    I(a,b)=\int_{0}^{1} ax^2+b \, dx.


This integral can be evaluated by using the following code:

>>> from scipy.integrate import quad
>>> def integrand(x, a, b):
...     return a*x**2 + b
...
>>> a = 2
>>> b = 1
>>> I = quad(integrand, 0, 1, args=(a,b))
>>> I
(1.6666666666666667, 1.8503717077085944e-14)


Infinite inputs are also allowed in :obj:`quad` by using :math:`\pm`
``inf`` as one of the arguments. For example, suppose that a numerical
value for the exponential integral:

.. math::

    E_{n}\left(x\right)=\int_{1}^{\infty}\frac{e^{-xt}}{t^{n}}\, dt.

is desired (and the fact that this integral can be computed as
``special.expn(n,x)`` is forgotten). The functionality of the function
:obj:`special.expn <scipy.special.expn>` can be replicated by defining a new function
``vec_expint`` based on the routine :obj:`quad`:

    >>> from scipy.integrate import quad
    >>> def integrand(t, n, x):
    ...     return np.exp(-x*t) / t**n
    ...

    >>> def expint(n, x):
    ...     return quad(integrand, 1, np.inf, args=(n, x))[0]
    ...

    >>> vec_expint = np.vectorize(expint)

    >>> vec_expint(3, np.arange(1.0, 4.0, 0.5))
    array([ 0.1097,  0.0567,  0.0301,  0.0163,  0.0089,  0.0049])
    >>> import scipy.special as special
    >>> special.expn(3, np.arange(1.0,4.0,0.5))
    array([ 0.1097,  0.0567,  0.0301,  0.0163,  0.0089,  0.0049])

The function which is integrated can even use the quad argument (though the
error bound may underestimate the error due to possible numerical error in the
integrand from the use of :obj:`quad` ). The integral in this case is

.. math::

    I_{n}=\int_{0}^{\infty}\int_{1}^{\infty}\frac{e^{-xt}}{t^{n}}\, dt\, dx=\frac{1}{n}.

>>> result = quad(lambda x: expint(3, x), 0, np.inf)
>>> print(result)
(0.33333333324560266, 2.8548934485373678e-09)

>>> I3 = 1.0/3.0
>>> print(I3)
0.333333333333

>>> print(I3 - result[0])
8.77306560731e-11

This last example shows that multiple integration can be handled using
repeated calls to :func:`quad`.


General multiple integration (:func:`dblquad`, :func:`tplquad`, :func:`nquad`)
------------------------------------------------------------------------------

The mechanics for double and triple integration have been wrapped up into the
functions :obj:`dblquad` and :obj:`tplquad`. These functions take the function
to  integrate and four, or six arguments, respectively. The limits of all
inner integrals need to be defined as functions.

An example of using double integration to compute several values of
:math:`I_{n}` is shown below:

    >>> from scipy.integrate import quad, dblquad
    >>> def I(n):
    ...     return dblquad(lambda t, x: np.exp(-x*t)/t**n, 0, np.inf, lambda x: 1, lambda x: np.inf)
    ...

    >>> print(I(4))
    (0.2500000000043577, 1.29830334693681e-08)
    >>> print(I(3))
    (0.33333333325010883, 1.3888461883425516e-08)
    >>> print(I(2))
    (0.4999999999985751, 1.3894083651858995e-08)


As example for non-constant limits consider the integral

.. math::

    I=\int_{y=0}^{1/2}\int_{x=0}^{1-2y} x y \, dx\, dy=\frac{1}{96}.


This integral can be evaluated using the expression below (Note the use of the
non-constant lambda functions for the upper limit of the inner integral):

>>> from scipy.integrate import dblquad
>>> area = dblquad(lambda x, y: x*y, 0, 0.5, lambda x: 0, lambda x: 1-2*x)
>>> area
(0.010416666666666668, 1.1564823173178715e-16)


For n-fold integration, scipy provides the function :obj:`nquad`. The
integration bounds are an iterable object: either a list of constant bounds,
or a list of functions for the non-constant integration bounds. The order of
integration (and therefore the bounds) is from the innermost integral to the
outermost one.

The integral from above

.. math::

    I_{n}=\int_{0}^{\infty}\int_{1}^{\infty}\frac{e^{-xt}}{t^{n}}\, dt\, dx=\frac{1}{n}

can be calculated as

>>> from scipy import integrate
>>> N = 5
>>> def f(t, x):
...    return np.exp(-x*t) / t**N
...
>>> integrate.nquad(f, [[1, np.inf],[0, np.inf]])
(0.20000000000002294, 1.2239614263187945e-08)

Note that the order of arguments for `f` must match the order of the
integration bounds; i.e., the inner integral with respect to :math:`t` is on
the interval :math:`[1, \infty]` and the outer integral with respect to
:math:`x` is on the interval :math:`[0, \infty]`.

Non-constant integration bounds can be treated in a similar manner; the
example from above

.. math::

    I=\int_{y=0}^{1/2}\int_{x=0}^{1-2y} x y \, dx\, dy=\frac{1}{96}.

can be evaluated by means of

>>> from scipy import integrate
>>> def f(x, y):
...     return x*y
...
>>> def bounds_y():
...     return [0, 0.5]
...
>>> def bounds_x(y):
...     return [0, 1-2*y]
...
>>> integrate.nquad(f, [bounds_x, bounds_y])
(0.010416666666666668, 4.101620128472366e-16)

which is the same result as before.

Gaussian quadrature
-------------------

A few functions are also provided in order to perform simple Gaussian
quadrature over a fixed interval. The first is :obj:`fixed_quad`, which
performs fixed-order Gaussian quadrature. The second function is
:obj:`quadrature`, which performs Gaussian quadrature of multiple
orders until the difference in the integral estimate is beneath some
tolerance supplied by the user. These functions both use the module
``scipy.special.orthogonal``, which can calculate the roots and quadrature
weights of a large variety of orthogonal polynomials (the polynomials
themselves are available as special functions returning instances of
the polynomial class --- e.g., :obj:`special.legendre <scipy.special.legendre>`).


Romberg Integration
-------------------

Romberg's method [WPR]_ is another method for numerically evaluating an
integral. See the help function for :func:`romberg` for further details.


Integrating using Samples
-------------------------

If the samples are equally-spaced and the number of samples available
is :math:`2^{k}+1` for some integer :math:`k`, then Romberg :obj:`romb`
integration can be used to obtain high-precision estimates of the
integral using the available samples. Romberg integration uses the
trapezoid rule at step-sizes related by a power of two and then
performs Richardson extrapolation on these estimates to approximate
the integral with a higher degree of accuracy.

In case of arbitrary spaced samples, the two functions :obj:`trapezoid`
and :obj:`simpson` are available. They are using Newton-Coates formulas
of order 1 and 2 respectively to perform integration. The trapezoidal rule
approximates the function as a straight line between adjacent points, while
Simpson's rule approximates the function between three adjacent points as a
parabola.

For an odd number of samples that are equally spaced Simpson's rule is exact
if the function is a polynomial of order 3 or less. If the samples are not
equally spaced, then the result is exact only if the function is a polynomial
of order 2 or less.

>>> import numpy as np
>>> def f1(x):
...    return x**2
...
>>> def f2(x):
...    return x**3
...
>>> x = np.array([1,3,4])
>>> y1 = f1(x)
>>> from scipy.integrate import simps
>>> I1 = simps(y1, x)
>>> print(I1)
21.0


This corresponds exactly to

.. math::

    \int_{1}^{4} x^2 \, dx = 21,

whereas integrating the second function

>>> y2 = f2(x)
>>> I2 = integrate.simps(y2, x)
>>> print(I2)
61.5

does not correspond to

.. math::

    \int_{1}^{4} x^3 \, dx = 63.75

because the order of the polynomial in f2 is larger than two.

.. _quad-callbacks:

Faster integration using low-level callback functions
-----------------------------------------------------

A user desiring reduced integration times may pass a C function
pointer through `scipy.LowLevelCallable` to `quad`, `dblquad`,
`tplquad` or `nquad` and it will be integrated and return a result in
Python.  The performance increase here arises from two factors.  The
primary improvement is faster function evaluation, which is provided
by compilation of the function itself.  Additionally we have a speedup
provided by the removal of function calls between C and Python in
:obj:`quad`.  This method may provide a speed improvements of ~2x for
trivial functions such as sine but can produce a much more noticeable
improvements (10x+) for more complex functions.  This feature then, is
geared towards a user with numerically intensive integrations willing
to write a little C to reduce computation time significantly.

The approach can be used, for example, via `ctypes` in a few simple steps:

1.) Write an integrand function in C with the function signature
``double f(int n, double *x, void *user_data)``, where ``x`` is an
array containing the point the function f is evaluated at, and ``user_data``
to arbitrary additional data you want to provide.

.. code-block:: c

   /* testlib.c */
   double f(int n, double *x, void *user_data) {
       double c = *(double *)user_data;
       return c + x[0] - x[1] * x[2]; /* corresponds to c + x - y * z */
   }

2.) Now compile this file to a shared/dynamic library (a quick search will help
with this as it is OS-dependent). The user must link any math libraries,
etc., used.  On linux this looks like::

    $ gcc -shared -fPIC -o testlib.so testlib.c

The output library will be referred to as ``testlib.so``, but it may have a
different file extension. A library has now been created that can be loaded
into Python with `ctypes`.

3.) Load shared library into Python using `ctypes` and set ``restypes`` and
``argtypes`` - this allows SciPy to interpret the function correctly:

.. code:: python

   import os, ctypes
   from scipy import integrate, LowLevelCallable

   lib = ctypes.CDLL(os.path.abspath('testlib.so'))
   lib.f.restype = ctypes.c_double
   lib.f.argtypes = (ctypes.c_int, ctypes.POINTER(ctypes.c_double), ctypes.c_void_p)

   c = ctypes.c_double(1.0)
   user_data = ctypes.cast(ctypes.pointer(c), ctypes.c_void_p)

   func = LowLevelCallable(lib.f, user_data)

The last ``void *user_data`` in the function is optional and can be omitted
(both in the C function and ctypes argtypes) if not needed. Note that the
coordinates are passed in as an array of doubles rather than a separate argument.

4.) Now integrate the library function as normally, here using `nquad`:

>>> integrate.nquad(func, [[0, 10], [-10, 0], [-1, 1]])
(1200.0, 1.1102230246251565e-11)

The Python tuple is returned as expected in a reduced amount of time.  All
optional parameters can be used with this method including specifying
singularities, infinite bounds, etc.

Ordinary differential equations (:func:`solve_ivp`)
---------------------------------------------------

Integrating a set of ordinary differential equations (ODEs) given
initial conditions is another useful example. The function
:obj:`solve_ivp` is available in SciPy for integrating a first-order
vector differential equation:

.. math::

    \frac{d\mathbf{y}}{dt}=\mathbf{f}\left(\mathbf{y},t\right),

given initial conditions :math:`\mathbf{y}\left(0\right)=y_{0}`, where
:math:`\mathbf{y}` is a length :math:`N` vector and :math:`\mathbf{f}`
is a mapping from :math:`\mathcal{R}^{N}` to :math:`\mathcal{R}^{N}.`
A higher-order ordinary differential equation can always be reduced to
a differential equation of this type by introducing intermediate
derivatives into the :math:`\mathbf{y}` vector.

For example, suppose it is desired to find the solution to the
following second-order differential equation:

.. math::

    \frac{d^{2}w}{dz^{2}}-zw(z)=0

with initial conditions :math:`w\left(0\right)=\frac{1}{\sqrt[3]{3^{2}}\Gamma\left(\frac{2}{3}\right)}` and :math:`\left.\frac{dw}{dz}\right|_{z=0}=-\frac{1}{\sqrt[3]{3}\Gamma\left(\frac{1}{3}\right)}.` It is known that the solution to this differential equation with these
boundary conditions is the Airy function

.. math::

    w=\textrm{Ai}\left(z\right),

which gives a means to check the integrator using :func:`special.airy <scipy.special.airy>`.

First, convert this ODE into standard form by setting
:math:`\mathbf{y}=\left[\frac{dw}{dz},w\right]` and :math:`t=z`. Thus,
the differential equation becomes

.. math::

    \frac{d\mathbf{y}}{dt}=\left[\begin{array}{c} ty_{1}\\ y_{0}\end{array}\right]=\left[\begin{array}{cc} 0 & t\\ 1 & 0\end{array}\right]\left[\begin{array}{c} y_{0}\\ y_{1}\end{array}\right]=\left[\begin{array}{cc} 0 & t\\ 1 & 0\end{array}\right]\mathbf{y}.

In other words,

.. math::

    \mathbf{f}\left(\mathbf{y},t\right)=\mathbf{A}\left(t\right)\mathbf{y}.

As an interesting reminder, if :math:`\mathbf{A}\left(t\right)`
commutes with :math:`\int_{0}^{t}\mathbf{A}\left(\tau\right)\, d\tau`
under matrix multiplication, then this linear differential equation
has an exact solution using the matrix exponential:

.. math::

    \mathbf{y}\left(t\right)=\exp\left(\int_{0}^{t}\mathbf{A}\left(\tau\right)d\tau\right)\mathbf{y}\left(0\right),

However, in this case, :math:`\mathbf{A}\left(t\right)` and its integral do not commute.

This differential equation can be solved using the function :obj:`solve_ivp`.
It requires the derivative, *fprime*, the time span `[t_start, t_end]`
and the initial conditions vector, *y0*, as input arguments and returns
an object whose *y* field is an array with consecutive solution values as
columns. The initial conditions are therefore given in the first output column.

>>> from scipy.integrate import solve_ivp
>>> from scipy.special import gamma, airy
>>> y1_0 = +1 / 3**(2/3) / gamma(2/3)
>>> y0_0 = -1 / 3**(1/3) / gamma(1/3)
>>> y0 = [y0_0, y1_0]
>>> def func(t, y):
...     return [t*y[1],y[0]]
...
>>> t_span = [0, 4]
>>> sol1 = solve_ivp(func, t_span, y0)
>>> print("sol1.t: {}".format(sol1.t))
sol1.t:    [0.         0.10097672 1.04643602 1.91060117 2.49872472 3.08684827
 3.62692846 4.        ]

As it can be seen `solve_ivp` determines its time steps automatically if not
specified otherwise. To compare the solution of `solve_ivp` with the `airy`
function the time vector created by `solve_ivp` is passed to the `airy` function.

>>> print("sol1.y[1]: {}".format(sol1.y[1]))
sol1.y[1]: [0.35502805 0.328952   0.12801343 0.04008508 0.01601291 0.00623879
 0.00356316 0.00405982]
>>> print("airy(sol.t)[0]:  {}".format(airy(sol1.t)[0]))
airy(sol.t)[0]: [0.35502805 0.328952   0.12804768 0.03995804 0.01575943 0.00562799
 0.00201689 0.00095156]

The solution of `solve_ivp` with its standard parameters shows a big deviation
to the airy function. To minimize this deviation, relative and absolute
tolerances can be used.

>>> rtol, atol = (1e-8, 1e-8)
>>> sol2 = solve_ivp(func, t_span, y0, rtol=rtol, atol=atol)
>>> print("sol2.y[1][::6]: {}".format(sol2.y[1][0::6]))
sol2.y[1][::6]: [0.35502805 0.19145234 0.06368989 0.0205917  0.00554734 0.00106409]
>>> print("airy(sol2.t)[0][::6]: {}".format(airy(sol2.t)[0][::6]))
airy(sol2.t)[0][::6]: [0.35502805 0.19145234 0.06368989 0.0205917  0.00554733 0.00106406]

To specify user defined time points for the solution of `solve_ivp`, `solve_ivp`
offers two possibilities that can also be used complementarily. By passing the `t_eval`
option to the function call `solve_ivp` returns the solutions of these time points
of `t_eval` in its output.

>>> import numpy as np
>>> t = np.linspace(0, 4, 100)
>>> sol3 = solve_ivp(func, t_span, y0, t_eval=t)

If the jacobian matrix of function is known, it can be passed to the `solve_ivp`
to achieve better results. Please be aware however that the default integration method
`RK45` does not support jacobian matrices and thereby another integration method has
to be chosen. One of the integration methods that support a jacobian matrix is the for
example the `Radau` method of following example.

>>> def gradient(t, y):
...     return [[0,t], [1,0]]
>>> sol4 = solve_ivp(func, t_span, y0, method='Radau', jac=gradient)

Solving a system with a banded Jacobian matrix
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

`odeint` can be told that the Jacobian is *banded*.  For a large
system of differential equations that are known to be stiff, this
can improve performance significantly.

As an example, we'll solve the 1-D Gray-Scott partial
differential equations using the method of lines [MOL]_.  The Gray-Scott equations
for the functions :math:`u(x, t)` and :math:`v(x, t)` on the interval
:math:`x \in [0, L]` are

.. math::

    \begin{split}
    \frac{\partial u}{\partial t} = D_u \frac{\partial^2 u}{\partial x^2} - uv^2 + f(1-u) \\
    \frac{\partial v}{\partial t} = D_v \frac{\partial^2 v}{\partial x^2} + uv^2 - (f + k)v \\
    \end{split}

where :math:`D_u` and :math:`D_v` are the diffusion coefficients of the
components :math:`u` and :math:`v`, respectively, and :math:`f` and :math:`k`
are constants.  (For more information about the system, see
http://groups.csail.mit.edu/mac/projects/amorphous/GrayScott/)

We'll assume Neumann (i.e., "no flux") boundary conditions:

.. math::

    \frac{\partial u}{\partial x}(0,t) = 0, \quad
    \frac{\partial v}{\partial x}(0,t) = 0, \quad
    \frac{\partial u}{\partial x}(L,t) = 0, \quad
    \frac{\partial v}{\partial x}(L,t) = 0

To apply the method of lines, we discretize the :math:`x` variable by defining
the uniformly spaced grid of :math:`N` points :math:`\left\{x_0, x_1, \ldots, x_{N-1}\right\}`, with
:math:`x_0 = 0` and :math:`x_{N-1} = L`.
We define :math:`u_j(t) \equiv u(x_k, t)` and :math:`v_j(t) \equiv v(x_k, t)`, and
replace the :math:`x` derivatives with finite differences.  That is,

.. math::

    \frac{\partial^2 u}{\partial x^2}(x_j, t) \rightarrow
        \frac{u_{j-1}(t) - 2 u_{j}(t) + u_{j+1}(t)}{(\Delta x)^2}

We then have a system of :math:`2N` ordinary differential equations:

.. math::
   :label: interior

    \begin{split}
    \frac{du_j}{dt} = \frac{D_u}{(\Delta x)^2} \left(u_{j-1} - 2 u_{j} + u_{j+1}\right)
          -u_jv_j^2 + f(1 - u_j) \\
    \frac{dv_j}{dt} = \frac{D_v}{(\Delta x)^2} \left(v_{j-1} - 2 v_{j} + v_{j+1}\right)
          + u_jv_j^2 - (f + k)v_j
    \end{split}

For convenience, the :math:`(t)` arguments have been dropped.

To enforce the boundary conditions, we introduce "ghost" points
:math:`x_{-1}` and :math:`x_N`, and define :math:`u_{-1}(t) \equiv u_1(t)`,
:math:`u_N(t) \equiv u_{N-2}(t)`; :math:`v_{-1}(t)` and :math:`v_N(t)`
are defined analogously.

Then

.. math::
   :label: boundary0

    \begin{split}
    \frac{du_0}{dt} = \frac{D_u}{(\Delta x)^2} \left(2u_{1} - 2 u_{0}\right)
          -u_0v_0^2 + f(1 - u_0) \\
    \frac{dv_0}{dt} = \frac{D_v}{(\Delta x)^2} \left(2v_{1} - 2 v_{0}\right)
          + u_0v_0^2 - (f + k)v_0
    \end{split}

and

.. math::
   :label: boundaryL

    \begin{split}
    \frac{du_{N-1}}{dt} = \frac{D_u}{(\Delta x)^2} \left(2u_{N-2} - 2 u_{N-1}\right)
          -u_{N-1}v_{N-1}^2 + f(1 - u_{N-1}) \\
    \frac{dv_{N-1}}{dt} = \frac{D_v}{(\Delta x)^2} \left(2v_{N-2} - 2 v_{N-1}\right)
          + u_{N-1}v_{N-1}^2 - (f + k)v_{N-1}
    \end{split}

Our complete system of :math:`2N` ordinary differential equations is :eq:`interior`
for :math:`k = 1, 2, \ldots, N-2`, along with :eq:`boundary0` and :eq:`boundaryL`.

We can now starting implementing this system in code.  We must combine
:math:`\{u_k\}` and :math:`\{v_k\}` into a single vector of length :math:`2N`.
The two obvious choices are
:math:`\{u_0, u_1, \ldots, u_{N-1}, v_0, v_1, \ldots, v_{N-1}\}`
and
:math:`\{u_0, v_0, u_1, v_1, \ldots, u_{N-1}, v_{N-1}\}`.
Mathematically, it does not matter, but the choice affects how
efficiently `odeint` can solve the system.  The reason is in how
the order affects the pattern of the nonzero elements of the Jacobian matrix.


When the variables are ordered
as :math:`\{u_0, u_1, \ldots, u_{N-1}, v_0, v_1, \ldots, v_{N-1}\}`,
the pattern of nonzero elements of the Jacobian matrix is

.. math::

    \begin{smallmatrix}
       * & * & 0 & 0 & 0 & 0 & 0  &  * & 0 & 0 & 0 & 0 & 0 & 0 \\
       * & * & * & 0 & 0 & 0 & 0  &  0 & * & 0 & 0 & 0 & 0 & 0 \\
       0 & * & * & * & 0 & 0 & 0  &  0 & 0 & * & 0 & 0 & 0 & 0 \\
       0 & 0 & * & * & * & 0 & 0  &  0 & 0 & 0 & * & 0 & 0 & 0 \\
       0 & 0 & 0 & * & * & * & 0  &  0 & 0 & 0 & 0 & * & 0 & 0 \\
       0 & 0 & 0 & 0 & * & * & *  &  0 & 0 & 0 & 0 & 0 & * & 0 \\
       0 & 0 & 0 & 0 & 0 & * & *  &  0 & 0 & 0 & 0 & 0 & 0 & * \\
       * & 0 & 0 & 0 & 0 & 0 & 0  &  * & * & 0 & 0 & 0 & 0 & 0 \\
       0 & * & 0 & 0 & 0 & 0 & 0  &  * & * & * & 0 & 0 & 0 & 0 \\
       0 & 0 & * & 0 & 0 & 0 & 0  &  0 & * & * & * & 0 & 0 & 0 \\
       0 & 0 & 0 & * & 0 & 0 & 0  &  0 & 0 & * & * & * & 0 & 0 \\
       0 & 0 & 0 & 0 & * & 0 & 0  &  0 & 0 & 0 & * & * & * & 0 \\
       0 & 0 & 0 & 0 & 0 & * & 0  &  0 & 0 & 0 & 0 & * & * & * \\
       0 & 0 & 0 & 0 & 0 & 0 & *  &  0 & 0 & 0 & 0 & ) & * & * \\
    \end{smallmatrix}

The Jacobian pattern with variables interleaved
as :math:`\{u_0, v_0, u_1, v_1, \ldots, u_{N-1}, v_{N-1}\}` is

.. math::
    \begin{smallmatrix}
       * & * & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
       * & * & 0 & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
       * & 0 & * & * & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
       0 & * & * & * & 0 & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
       0 & 0 & * & 0 & * & * & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
       0 & 0 & 0 & * & * & * & 0 & * & 0 & 0 & 0 & 0 & 0 & 0 \\
       0 & 0 & 0 & 0 & * & 0 & * & * & * & 0 & 0 & 0 & 0 & 0 \\
       0 & 0 & 0 & 0 & 0 & * & * & * & 0 & * & 0 & 0 & 0 & 0 \\
       0 & 0 & 0 & 0 & 0 & 0 & * & 0 & * & * & * & 0 & 0 & 0 \\
       0 & 0 & 0 & 0 & 0 & 0 & 0 & * & * & * & 0 & * & 0 & 0 \\
       0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & * & 0 & * & * & * & 0 \\
       0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & * & * & * & 0 & * \\
       0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & * & 0 & * & * \\
       0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & * & * & * \\
    \end{smallmatrix}

In both cases, there are just five nontrivial diagonals, but
when the variables are interleaved, the bandwidth is much
smaller.
That is, the main diagonal and the two diagonals immediately
above and the two immediately below the main diagonal
are the nonzero diagonals.
This is important, because the inputs ``mu`` and ``ml``
of `odeint` are the upper and lower bandwidths of the
Jacobian matrix.  When the variables are interleaved,
``mu`` and ``ml`` are 2.  When the variables are stacked
with :math:`\{v_k\}` following :math:`\{u_k\}`, the upper
and lower bandwidths are :math:`N`.

With that decision made, we can write the function that
implements the system of differential equations.

First, we define the functions for the source and reaction
terms of the system::

    def G(u, v, f, k):
        return f * (1 - u) - u*v**2

    def H(u, v, f, k):
        return -(f + k) * v + u*v**2

Next, we define the function that computes the right-hand side
of the system of differential equations::

    def grayscott1d(y, t, f, k, Du, Dv, dx):
        """
        Differential equations for the 1-D Gray-Scott equations.

        The ODEs are derived using the method of lines.
        """
        # The vectors u and v are interleaved in y.  We define
        # views of u and v by slicing y.
        u = y[::2]
        v = y[1::2]

        # dydt is the return value of this function.
        dydt = np.empty_like(y)

        # Just like u and v are views of the interleaved vectors
        # in y, dudt and dvdt are views of the interleaved output
        # vectors in dydt.
        dudt = dydt[::2]
        dvdt = dydt[1::2]

        # Compute du/dt and dv/dt.  The end points and the interior points
        # are handled separately.
        dudt[0]    = G(u[0],    v[0],    f, k) + Du * (-2.0*u[0] + 2.0*u[1]) / dx**2
        dudt[1:-1] = G(u[1:-1], v[1:-1], f, k) + Du * np.diff(u,2) / dx**2
        dudt[-1]   = G(u[-1],   v[-1],   f, k) + Du * (- 2.0*u[-1] + 2.0*u[-2]) / dx**2
        dvdt[0]    = H(u[0],    v[0],    f, k) + Dv * (-2.0*v[0] + 2.0*v[1]) / dx**2
        dvdt[1:-1] = H(u[1:-1], v[1:-1], f, k) + Dv * np.diff(v,2) / dx**2
        dvdt[-1]   = H(u[-1],   v[-1],   f, k) + Dv * (-2.0*v[-1] + 2.0*v[-2]) / dx**2

        return dydt

We won't implement a function to compute the Jacobian, but we will tell
`odeint` that the Jacobian matrix is banded.  This allows the underlying
solver (LSODA) to avoid computing values that it knows are zero.  For a large
system, this improves the performance significantly, as demonstrated in the
following ipython session.

First, we define the required inputs::

    In [31]: y0 = np.random.randn(5000)

    In [32]: t = np.linspace(0, 50, 11)

    In [33]: f = 0.024

    In [34]: k = 0.055

    In [35]: Du = 0.01

    In [36]: Dv = 0.005

    In [37]: dx = 0.025

Time the computation without taking advantage of the banded structure
of the Jacobian matrix::

    In [38]: %timeit sola = odeint(grayscott1d, y0, t, args=(f, k, Du, Dv, dx))
    1 loop, best of 3: 25.2 s per loop

Now set ``ml=2`` and ``mu=2``, so `odeint` knows that the Jacobian matrix
is banded::

    In [39]: %timeit solb = odeint(grayscott1d, y0, t, args=(f, k, Du, Dv, dx), ml=2, mu=2)
    10 loops, best of 3: 191 ms per loop

That is quite a bit faster!

Let's ensure that they have computed the same result::

    In [41]: np.allclose(sola, solb)
    Out[41]: True

References
~~~~~~~~~~

.. [WPR] https://en.wikipedia.org/wiki/Romberg's_method

.. [MOL] https://en.wikipedia.org/wiki/Method_of_lines