File: continuous_betaprime.rst

package info (click to toggle)
scipy 1.6.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 132,464 kB
  • sloc: python: 207,830; ansic: 92,105; fortran: 76,906; cpp: 68,145; javascript: 32,742; makefile: 422; pascal: 421; sh: 158
file content (36 lines) | stat: -rwxr-xr-x 1,929 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

.. _continuous-betaprime:

Beta Prime Distribution
=======================

There are two shape parameters :math:`a,b > 0` and the support is :math:`x \in [0,\infty)`.
Note the CDF evaluation uses Eq. 3.194.1 on pg. 313 of Gradshteyn & Ryzhik (sixth edition).

.. math::
   :nowrap:

    \begin{eqnarray*} f\left(x;\alpha,\beta\right) & = & \frac{\Gamma\left(\alpha+\beta\right)}{\Gamma\left(\alpha\right)\Gamma\left(\beta\right)}x^{\alpha-1}\left(1+x\right)^{-\alpha-\beta}\\
    F\left(x;\alpha,\beta\right) & = & \frac{\Gamma\left(\alpha+\beta\right)}{\alpha\Gamma\left(\alpha\right)\Gamma\left(\beta\right)}x^{\alpha}\,_{2}F_{1}\left(\alpha+\beta,\alpha;1+\alpha;-x\right)\\
    G\left(q;\alpha,\beta\right) & = & F^{-1}\left(x;\alpha,\beta\right)\end{eqnarray*}

.. math::

    \mu_{n}^{\prime}=\left\{
      \begin{array}{ccc}
        \frac{\Gamma\left(n+\alpha\right)\Gamma\left(\beta-n\right)}{\Gamma\left(\alpha\right)\Gamma\left(\beta\right)}=\frac{\left(\alpha\right)_{n}}{\left(\beta-n\right)_{n}} &  & \beta>n\\
        \infty &  & \mathrm{otherwise}
      \end{array}\right.

Therefore,

.. math::
   :nowrap:

    \begin{eqnarray*} \mu & = & \frac{\alpha}{\beta-1}\quad\textrm{for }\beta>1\\
    \mu_{2} & = & \frac{\alpha\left(\alpha+1\right)}{\left(\beta-2\right)\left(\beta-1\right)}-\frac{\alpha^{2}}{\left(\beta-1\right)^{2}}\quad\textrm{for }\beta>2\\
    \gamma_{1} & = & \frac{\frac{\alpha\left(\alpha+1\right)\left(\alpha+2\right)}{\left(\beta-3\right)\left(\beta-2\right)\left(\beta-1\right)}-3\mu\mu_{2}-\mu^{3}}{\mu_{2}^{3/2}}\quad\textrm{for }\beta>3\\
    \gamma_{2} & = & \frac{\mu_{4}}{\mu_{2}^{2}}-3\\
    \mu_{4} & = & \frac{\alpha\left(\alpha+1\right)\left(\alpha+2\right)\left(\alpha+3\right)}{\left(\beta-4\right)\left(\beta-3\right)\left(\beta-2\right)\left(\beta-1\right)}-4\mu\mu_{3}-6\mu^{2}\mu_{2}-\mu^{4}\quad\textrm{for }\beta>4\end{eqnarray*}

Implementation: `scipy.stats.betaprime`