File: continuous_chi.rst

package info (click to toggle)
scipy 1.6.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 132,464 kB
  • sloc: python: 207,830; ansic: 92,105; fortran: 76,906; cpp: 68,145; javascript: 32,742; makefile: 422; pascal: 421; sh: 158
file content (25 lines) | stat: -rwxr-xr-x 1,349 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

.. _continuous-chi:

Chi Distribution
================

Generated by taking the (positive) square-root of chi-squared
variates. The one shape parameter is :math:`\nu`, a positive integer, the degrees of freedom.
The support is :math:`x\geq0`.

.. math::
   :nowrap:

    \begin{eqnarray*} f\left(x;\nu\right) & = & \frac{x^{\nu-1}e^{-x^{2}/2}}{2^{\nu/2-1}\Gamma\left(\frac{\nu}{2}\right)}\\
    F\left(x;\nu\right) & = & \frac{\gamma\left(\frac{\nu}{2},\frac{x^{2}}{2}\right)}{\Gamma(\frac{\nu}{2})}\\
    G\left(q;\nu\right) & = & \sqrt{2\gamma^{-1}\left(\frac{\nu}{2},q\Gamma(\frac{\nu}{2})\right)}\\
    M\left(t\right) & = & \Gamma\left(\frac{v}{2}\right)\,_{1}F_{1}\left(\frac{v}{2};\frac{1}{2};\frac{t^{2}}{2}\right)+\frac{t}{\sqrt{2}}\Gamma\left(\frac{1+\nu}{2}\right)\,_{1}F_{1}\left(\frac{1+\nu}{2};\frac{3}{2};\frac{t^{2}}{2}\right)\\
    \mu & = & \frac{\sqrt{2}\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\\
    \mu_{2} & = & \nu-\mu^{2}\\
    \gamma_{1} & = & \frac{2\mu^{3}+\mu\left(1-2\nu\right)}{\mu_{2}^{3/2}}\\
    \gamma_{2} & = & \frac{2\nu\left(1-\nu\right)-6\mu^{4}+4\mu^{2}\left(2\nu-1\right)}{\mu_{2}^{2}}\\
    m_{d} & = & \sqrt{\nu-1}\quad\nu\geq1\\
    m_{n} & = & \sqrt{2\gamma^{-1}\left(\frac{\nu}{2},\frac{1}{2}{\Gamma(\frac{\nu}{2})}\right)}\end{eqnarray*}

Implementation: `scipy.stats.chi`