File: continuous_chi2.rst

package info (click to toggle)
scipy 1.6.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 132,464 kB
  • sloc: python: 207,830; ansic: 92,105; fortran: 76,906; cpp: 68,145; javascript: 32,742; makefile: 422; pascal: 421; sh: 158
file content (33 lines) | stat: -rwxr-xr-x 1,363 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

.. _continuous-chi2:

Chi-squared Distribution
========================

This is the gamma distribution with :math:`L=0.0` and :math:`S=2.0` and :math:`\alpha=\nu/2` where :math:`\nu` is called the degrees of freedom. If :math:`Z_{1}\ldots Z_{\nu}` are all standard normal distributions, then :math:`W=\sum_{k}Z_{k}^{2}` has (standard) chi-square distribution with :math:`\nu` degrees of freedom.

The standard form (most often used in standard form only) has support :math:`x\geq0`.

.. math::
   :nowrap:

    \begin{eqnarray*} f\left(x;\alpha\right) & = & \frac{1}{2\Gamma\left(\frac{\nu}{2}\right)}\left(\frac{x}{2}\right)^{\nu/2-1}e^{-x/2}\\
    F\left(x;\alpha\right) & = & \frac{\gamma\left(\frac{\nu}{2},\frac{x}{2}\right)}{\Gamma(\frac{\nu}{2})}\\
    G\left(q;\alpha\right) & = & 2\gamma^{-1}\left(\frac{\nu}{2},q{\Gamma(\frac{\nu}{2})}\right)\end{eqnarray*}

where :math:`\gamma` is the lower incomplete gamma function, :math:`\gamma\left(s, x\right) = \int_0^x t^{s-1} e^{-t} dt`.

.. math::

     M\left(t\right)=\frac{\Gamma\left(\frac{\nu}{2}\right)}{\left(\frac{1}{2}-t\right)^{\nu/2}}

.. math::
   :nowrap:

    \begin{eqnarray*} \mu & = & \nu\\
    \mu_{2} & = & 2\nu\\
    \gamma_{1} & = & \frac{2\sqrt{2}}{\sqrt{\nu}}\\
    \gamma_{2} & = & \frac{12}{\nu}\\
    m_{d} & = & \frac{\nu}{2}-1\end{eqnarray*}

Implementation: `scipy.stats.chi2`