1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
|
.. _continuous-foldcauchy:
Folded Cauchy Distribution
==========================
This formula can be expressed in terms of the standard formulas for
the Cauchy distribution (call the cdf :math:`C\left(x\right)` and
the pdf :math:`d\left(x\right)` ).
If :math:`Y` is cauchy then :math:`\left|Y\right|` is folded cauchy.
There is one shape parameter :math:`c` and the support is :math:`x\geq0.`
.. math::
:nowrap:
\begin{eqnarray*} f\left(x;c\right) & = & \frac{1}{\pi\left(1+\left(x-c\right)^{2}\right)}+\frac{1}{\pi\left(1+\left(x+c\right)^{2}\right)}\\
F\left(x;c\right) & = & \frac{1}{\pi}\tan^{-1}\left(x-c\right)+\frac{1}{\pi}\tan^{-1}\left(x+c\right)\\
G\left(q;c\right) & = & F^{-1}\left(q;c\right)\end{eqnarray*}
No moments
Implementation: `scipy.stats.foldcauchy`
|