File: continuous_loggamma.rst

package info (click to toggle)
scipy 1.6.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 132,464 kB
  • sloc: python: 207,830; ansic: 92,105; fortran: 76,906; cpp: 68,145; javascript: 32,742; makefile: 422; pascal: 421; sh: 158
file content (30 lines) | stat: -rwxr-xr-x 1,054 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

.. _continuous-loggamma:

Log Gamma Distribution
======================

A single shape parameter :math:`c>0` . The support is :math:`x\in\mathbb{R}`.

.. math::
   :nowrap:

    \begin{eqnarray*} f\left(x;c\right) & = & \frac{\exp\left(cx-e^{x}\right)}{\Gamma\left(c\right)}\\
    F\left(x;c\right) & = & \frac{\gamma\left(c,e^{x}\right)}{\Gamma\left(c\right)}\\
    G\left(q;c\right) & = & \log\left(\gamma^{-1}\left(c,q\Gamma\left(c\right)\right)\right)\end{eqnarray*}

where :math:`\gamma` is the lower incomplete gamma function, :math:`\gamma\left(s, x\right) = \int_0^x t^{s-1} e^{-t} dt`.

.. math::

     \mu_{n}^{\prime}=\int_{0}^{\infty}\left[\log y\right]^{n}y^{c-1}\exp\left(-y\right)dy.

.. math::
   :nowrap:

    \begin{eqnarray*} \mu & = & \mu_{1}^{\prime}\\
    \mu_{2} & = & \mu_{2}^{\prime}-\mu^{2}\\
    \gamma_{1} & = & \frac{\mu_{3}^{\prime}-3\mu\mu_{2}-\mu^{3}}{\mu_{2}^{3/2}}\\
    \gamma_{2} & = & \frac{\mu_{4}^{\prime}-4\mu\mu_{3}-6\mu^{2}\mu_{2}-\mu^{4}}{\mu_{2}^{2}}-3\end{eqnarray*}

Implementation: `scipy.stats.loggamma`