1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
|
.. _continuous-logistic:
Logistic (Sech-squared) Distribution
====================================
A special case of the Generalized Logistic distribution with :math:`c=1.` Defined for :math:`x\geq0`
.. math::
:nowrap:
\begin{eqnarray*} f\left(x\right) & = & \frac{\exp\left(-x\right)}{\left(1+\exp\left(-x\right)\right)^{2}}\\
F\left(x\right) & = & \frac{1}{1+\exp\left(-x\right)}\\
G\left(q\right) & = & -\log\left(1/q-1\right)\end{eqnarray*}
.. math::
:nowrap:
\begin{eqnarray*} \mu & = & \gamma+\psi_{0}\left(1\right)=0\\
\mu_{2} & = & \frac{\pi^{2}}{6}+\psi_{1}\left(1\right)=\frac{\pi^{2}}{3}\\
\gamma_{1} & = & \frac{\psi_{2}\left(1\right)+2\zeta\left(3\right)}{\mu_{2}^{3/2}}=0\\
\gamma_{2} & = & \frac{\left(\frac{\pi^{4}}{15}+\psi_{3}\left(1\right)\right)}{\mu_{2}^{2}}=\frac{6}{5}\\
m_{d} & = & \log1=0\\
m_{n} & = & -\log\left(2-1\right)=0\end{eqnarray*}
where :math:`\psi_m` is the polygamma function :math:`\psi_m(z) = \frac{d^{m+1}}{dz^{m+1}} \log(\Gamma(z))`.
.. math::
h\left[X\right]=1.
Implementation: `scipy.stats.logistic`
|