File: continuous_ncf.rst

package info (click to toggle)
scipy 1.6.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 132,464 kB
  • sloc: python: 207,830; ansic: 92,105; fortran: 76,906; cpp: 68,145; javascript: 32,742; makefile: 422; pascal: 421; sh: 158
file content (44 lines) | stat: -rwxr-xr-x 1,566 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

.. _continuous-ncf:

Noncentral F Distribution
=========================

The distribution of :math:`\left(X_{1}/X_{2}\right)\left(\nu_{2}/\nu_{1}\right)`
if :math:`X_{1}` is non-central chi-squared with :math:`\nu_{1}` degrees of
freedom and parameter :math:`\lambda`, and :math:`X_{2}` is chi-squared with
:math:`\nu_{2}` degrees of freedom.

There are 3 shape parameters: the degrees of freedom :math:`\nu_{1}>0` and
:math:`\nu_{2}>0`; and :math:`\lambda\geq 0`.


.. math::
   :nowrap:

    \begin{eqnarray*}
        f\left(x;\lambda,\nu_{1},\nu_{2}\right)
        & = &
        \exp\left[\frac{\lambda}{2} +
                  \frac{\left(\lambda\nu_{1}x\right)}
                  {2\left(\nu_{1}x+\nu_{2}\right)}
            \right]
        \nu_{1}^{\nu_{1}/2}\nu_{2}^{\nu_{2}/2}x^{\nu_{1}/2-1} \\
        &  &
        \times\left(\nu_{2}+\nu_{1}x\right)^{-\left(\nu_{1}+\nu_{2}\right)/2}
        \frac{\Gamma\left(\frac{\nu_{1}}{2}\right)
              \Gamma\left(1+\frac{\nu_{2}}{2}\right)
              L_{\nu_{2}/2}^{\nu_{1}/2-1}
                \left(-\frac{\lambda\nu_{1}x}
                            {2\left(\nu_{1}x+\nu_{2}\right)}\right)}
             {B\left(\frac{\nu_{1}}{2},\frac{\nu_{2}}{2}\right)
              \Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}
    \end{eqnarray*}

where :math:`L_{\nu_{2}/2}^{\nu_{1}/2-1}(x)` is an associated Laguerre
polynomial.

If :math:`\lambda=0`, the distribution becomes equivalent to the Fisher
distribution with :math:`\nu_{1}` and :math:`\nu_{2}` degrees of freedom.

Implementation: `scipy.stats.ncf`