File: continuous_norminvgauss.rst

package info (click to toggle)
scipy 1.6.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 132,464 kB
  • sloc: python: 207,830; ansic: 92,105; fortran: 76,906; cpp: 68,145; javascript: 32,742; makefile: 422; pascal: 421; sh: 158
file content (20 lines) | stat: -rwxr-xr-x 963 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

.. _continuous-norminvgauss:

Normal Inverse Gaussian Distribution
==============================================

The probability density function is given by:

.. math::
	:nowrap:

	\begin{eqnarray*}
	        f(x; a, b) = \frac{a \exp\left(\sqrt{a^2 - b^2} + b x \right)}{\pi \sqrt{1 + x^2}} \, K_1\left(a * sqrt{1 + x^2}\right),
	\end{eqnarray*}

where :math:`x` is a real number, the parameter :math:`a` is the tail heaviness and :math:`b` is the asymmetry parameter satisfying :math:`a > 0` and :math:`|b| \leq a`. :math:`K_1` is the modified Bessel function of second kind (`scipy.special.k1`).

A normal inverse Gaussian random variable with parameters :math:`a` and :math:`b` can be expressed  as :math:`X = b V + \sqrt(V) X` where :math:`X` is `norm(0,1)` and :math:`V` is `invgauss(mu=1/sqrt(a**2 - b**2))`. Hence, the normal inverse Gaussian distribution is a special case of normal variance-mean mixtures.

Implementation: `scipy.stats.norminvgauss`