File: continuous_powerlognorm.rst

package info (click to toggle)
scipy 1.6.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 132,464 kB
  • sloc: python: 207,830; ansic: 92,105; fortran: 76,906; cpp: 68,145; javascript: 32,742; makefile: 422; pascal: 421; sh: 158
file content (30 lines) | stat: -rwxr-xr-x 1,164 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

.. _continuous-powerlognorm:

Power Log Normal Distribution
=============================

A generalization of the log-normal distribution with shape parameters :math:`\sigma>0`, :math:`c>0` and support :math:`x\geq0`.

.. math::
   :nowrap:

    \begin{eqnarray*} f\left(x;\sigma,c\right) & = & \frac{c}{x\sigma}\phi\left(\frac{\log x}{\sigma}\right)\left(\Phi\left(-\frac{\log x}{\sigma}\right)\right)^{c-1}\\
    F\left(x;\sigma,c\right) & = & 1-\left(\Phi\left(-\frac{\log x}{\sigma}\right)\right)^{c}\\
    G\left(q;\sigma,c\right) & = & \exp\left(-\sigma\Phi^{-1}\left(\left(1-q\right)^{1/c}\right)\right)\end{eqnarray*}

.. math::

     \mu_{n}^{\prime}=\int_{0}^{1}\exp\left(-n\sigma\Phi^{-1}\left(y^{1/c}\right)\right)dy

.. math::
   :nowrap:

    \begin{eqnarray*} \mu & = & \mu_{1}^{\prime}\\
    \mu_{2} & = & \mu_{2}^{\prime}-\mu^{2}\\
    \gamma_{1} & = & \frac{\mu_{3}^{\prime}-3\mu\mu_{2}-\mu^{3}}{\mu_{2}^{3/2}}\\
    \gamma_{2} & = & \frac{\mu_{4}^{\prime}-4\mu\mu_{3}-6\mu^{2}\mu_{2}-\mu^{4}}{\mu_{2}^{2}}-3\end{eqnarray*}

This distribution reduces to the log-normal distribution when :math:`c=1.`

Implementation: `scipy.stats.powerlognorm`