1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
|
.. _continuous-weibull_max:
Weibull Maximum Extreme Value Distribution
==========================================
Defined for :math:`x<0` and :math:`c>0` .
.. math::
:nowrap:
\begin{eqnarray*} f\left(x;c\right) & = & c\left(-x\right)^{c-1}\exp\left(-\left(-x\right)^{c}\right)\\ F\left(x;c\right) & = & \exp\left(-\left(-x\right)^{c}\right)\\ G\left(q;c\right) & = & -\left(-\log q\right)^{1/c}\end{eqnarray*}
The mean is the negative of the right-skewed Frechet distribution
given above, and the other statistical parameters can be computed from
.. math::
\mu_{n}^{\prime}=\left(-1\right)^{n}\Gamma\left(1+\frac{n}{c}\right).
.. math::
:nowrap:
\begin{eqnarray*}
\mu & = & -\Gamma\left(1+\frac{1}{c}\right) \\
\mu_{2} & = & \Gamma\left(1+\frac{2}{c}\right) -
\Gamma^{2}\left(1+\frac{1}{c}\right) \\
\gamma_{1} & = & -\frac{\Gamma\left(1+\frac{3}{c}\right) -
3\Gamma\left(1+\frac{2}{c}\right)\Gamma\left(1+\frac{1}{c}\right) +
2\Gamma^{3}\left(1+\frac{1}{c}\right)}
{\mu_{2}^{3/2}} \\
\gamma_{2} & = & \frac{\Gamma\left(1+\frac{4}{c}\right) -
4\Gamma\left(1+\frac{1}{c}\right)\Gamma\left(1+\frac{3}{c}\right) +
6\Gamma^{2}\left(1+\frac{1}{c}\right)\Gamma\left(1+\frac{2}{c}\right) -
3\Gamma^{4}\left(1+\frac{1}{c}\right)}
{\mu_{2}^{2}} - 3 \\
m_{d} & = & \begin{cases}
-\left(\frac{c-1}{c}\right)^{\frac{1}{c}} & \text{if}\; c > 1 \\
0 & \text{if}\; c <= 1
\end{cases} \\
m_{n} & = & -\ln\left(2\right)^{\frac{1}{c}}
\end{eqnarray*}
.. math::
h\left[X\right]=-\frac{\gamma}{c}-\log\left(c\right)+\gamma+1
where :math:`\gamma` is Euler's constant and equal to
.. math::
\gamma\approx0.57721566490153286061.
Implementation: `scipy.stats.weibull_max`
|