1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
#!/usr/bin/env python
"""
Demonstration of some more advanced examples on how to use the surf command
to plot surfaces.
"""
from scitools.std import *
def test():
"""Converted version of the Klein Bottle demo in Matlab."""
n = 12;
a = .2; # the diameter of the small tube
c = .6; # the diameter of the bulb
t1 = seq(pi/4, 5*pi/4, pi/n); # parameter along the tube
t2 = seq(5*pi/4, 9*pi/4, pi/n); # angle around the tube
u = seq(pi/2, 5*pi/2, pi/n)
X,Z1 = ndgrid(t1,u,sparse=False)
Y,Z2 = ndgrid(t2,u,sparse=False)
setp(interactive=False)
# The handle
len_ = sqrt(sin(X)**2 + cos(2*X)**2);
x1 = c*ones(shape(X))*(cos(X)*sin(X)
- 0.5*ones(shape(X))+a*sin(Z1)*sin(X)/len_);
y1 = a*c*cos(Z1)*ones(shape(X));
z1 = ones(shape(X))*cos(X) + a*c*sin(Z1)*cos(2*X)/len_;
#import sys; sys.exit()
handleHndl=surf(x1,y1,z1,X);
#set(handleHndl,'EdgeColor',[.5 .5 .5]);
hold('on');
# The bulb
r = sin(Y) * cos(Y) - (a + 1./2) * ones(shape(Y));
x2 = c * sin(Z2) * r;
y2 = - c * cos(Z2) * r;
z2 = ones(shape(Y)) * cos(Y);
bulbHndl=surf(x2,y2,z2,Y);
#set(bulbHndl,'EdgeColor',[.5 .5 .5])
try: colormap(hsv());
except NotImplementedError: pass
axis('vis3d')
view(-37,30);
axis('off')
light(lightpos=(2,-4,5))
light()
#shading('interp')
hold('off')
show()
def test2():
"""Converted version of the Werner Boy's Surface demo in Matlab."""
n = 128;
u = linspace(0,pi,n);
v = linspace(0,pi,n);
u = u[newaxis,:]*ones((n,1))
v = v[:,newaxis]*ones((1,n))
#u = repmat(u,n,1);
#v = repmat(transpose(v),1,n);
x = cos(v)*sin(u);
y = sin(v)*sin(u);
z = cos(u);
f = 1./2*((2*x**2-y**2-z**2) + 2*y*z*(y**2-z**2) +
z*x*(x**2-z**2) + x*y*(y**2-x**2));
g = sqrt(3)/2 * ((y**2-z**2) + z*x*(z**2-x**2) + x*y*(y**2-x**2));
h = (x+y+z)*((x+y+z)**3 + 4*(y-x)*(z-y)*(x-z));
setp(interactive=False)
s = surf(f,g,h/10,u,
shading='interp',
daspect=[1,1,1],
view=(-40,32),
axis='off')
try: colormap(jet())
except NotImplementedError: pass
#'LineStyle','none', ...
#'FaceLighting','gouraud', ...
#'FaceColor','interp');
#l1 = light();
#l2 = light();
#lightangle(l1,70,-40);
#lightangle(l2,-30,80);
camzoom(1.5)
show()
def test3():
"""Converted version of the knot demo in Matlab."""
# Number of grid points in each (circular) section of the tube.
m = 20;
# Number of sections along the tube.
n = 60;
# Radius of the tube.
R = 0.75;
# Symmetry index. Try q=floor(n/3) (symmetric) or q=floor(n/4)
q = int(floor(n/3));
# Do not change this!
t = seq(0,n)/n;
# The generating function f0 must be 1-periodic.
# f1 and f2 are the first and second derivatives of f0.
a = 2; b = 3; c = 1.5;
q1=2; q2=4;
f0 = sin(q1*pi*t) + a*sin(q2*pi*t) - \
b*cos(4*pi*t)/2 + c*sin(6*pi*t);
f1 = (q1*pi)*cos(q1*pi*t) + a*(q2*pi)*cos(q2*pi*t) + \
b*(4*pi)*sin(4*pi*t)/2 + c*(6*pi)*cos(6*pi*t);
f2 = -(q1*pi)**2*sin(q1*pi*t) - a*(q2*pi)**2*sin(q2*pi*t) + \
b*(4*pi)**2*cos(4*pi*t)/2 - c*(6*pi)**2*sin(6*pi*t);
# Extend f periodically to 2 period-intervals:
#f0 = [ f0(1:n) f0(1:n) ];
f0 = ravel(array([f0[0:n],f0[0:n]], float))
#f1 = [ f1(1:n) f1(1:n) ];
f1 = ravel(array([f1[0:n],f1[0:n]], float))
#f2 = [ f2(1:n) f2(1:n) ];
f2 = ravel(array([f2[0:n],f2[0:n]], float))
# [x10;x20;x30] is the parametric representation of
# the center-line of the tube:
x10 = f0[0:n+1] #f0(1:n+1);
x20 = f0[q:q+n+1];
x30 = f0[2*q:2*q+n+1];
# [x11;x21;x31] is velocity (same as tangent) vector:
x11 = f1[0:n+1];
x21 = f1[q:q+n+1];
x31 = f1[2*q:2*q+n+1];
# [x12;x22;x32] is acceleration vector:
x12 = f2[0:n+1];
x22 = f2[q:q+n+1];
x32 = f2[2*q:2*q+n+1];
speed = sqrt(x11**2 + x21**2 + x31**2);
# This is the dot-product of the velocity and acceleration vectors:
velacc = x11*x12 + x21*x22 + x31*x32;
# Here is the normal vector:
nrml1 = speed**2 * x12 - velacc*x11;
nrml2 = speed**2 * x22 - velacc*x21;
nrml3 = speed**2 * x32 - velacc*x31;
normallength = sqrt(nrml1**2 + nrml2**2 + nrml3**2);
# And here is the normalized normal vector:
unitnormal1 = nrml1 / normallength;
unitnormal2 = nrml2 / normallength;
unitnormal3 = nrml3 / normallength;
# And the binormal vector ( B = T x N )
binormal1 = (x21*unitnormal3 - x31*unitnormal2) / speed;
binormal2 = (x31*unitnormal1 - x11*unitnormal3) / speed;
binormal3 = (x11*unitnormal2 - x21*unitnormal1) / speed;
# s is the coordinate along the circular cross-sections of the tube:
s = seq(0,m)[:,newaxis];
s = (2*pi/m)*s;
# Each of x1, x2, x3 is an (m+1)x(n+1) matrix.
# Rows represent coordinates along the tube. Columns represent coordinates
# in each (circular) cross-section of the tube.
xa1 = ones((m+1,1))*x10;
xb1 = (cos(s)*unitnormal1 + sin(s)*binormal1);
xa2 = ones((m+1,1))*x20;
xb2 = (cos(s)*unitnormal2 + sin(s)*binormal2);
xa3 = ones((m+1,1))*x30;
xb3 = (cos(s)*unitnormal3 + sin(s)*binormal3);
color = ones((m+1,1))*(seq(0,n)*2/n-1);
x1 = xa1 + R*xb1;
x2 = xa2 + R*xb2;
x3 = xa3 + R*xb3;
setp(interactive=False)
surf(x1,x2,x3,color);
shading('interp');
light()
#lighting gouraud % 'lighting phong' will use zbuffer, slower
view(2)
axis('equal')
axis('off')
axis('vis3d') # for smooth rotate3d
show()
if __name__ == '__main__':
test()
figure()
test2()
figure()
test3()
raw_input('Press Return key to quit: ')
|