File: numpyutils.py

package info (click to toggle)
scitools 0.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 4,148 kB
  • ctags: 3,332
  • sloc: python: 34,714; sh: 112; makefile: 8
file content (1700 lines) | stat: -rwxr-xr-x 58,055 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
"""

Functionality of this module that extends Numerical Python
==========================================================

 - solve_tridiag_linear_system:
           returns the solution of a tridiagonal linear system
 - wrap2callable:
           tool for turning constants, discrete data, string
           formulas, function objects, or plain functions
           into an object that behaves as a function
 - NumPy_array_iterator:
           allows iterating over all array elements using
           a single, standard for loop (for value, index in iterator),
           has some additional features compared with numpy.ndenumerate
 - asarray_cpwarn:
           as ``numpy.asarray(a)``, but a warning or exception is issued if
           the array a is copied
 - meshgrid:
           extended version of ``numpy.meshgrid`` to 1D, 2D and 3D grids,
           with sparse or dense coordinate arrays and matrix or grid
           indexing
 - ndgrid:
           same as calling ``meshgrid`` with indexing='ij' (matrix indexing)
 - float_eq:
           ``operator ==`` for float operands with tolerance,
           ``float_eq(a,b,tol)`` means ``abs(a-b) < tol``
           works for both scalar and array arguments
           (similar functions for other operations exists:
           ``float_le``, ``float_lt``, ``float_ge``, ``float_gt``,
           ``float_ne``)
 - cut_noise:
           set all small (noise) elements of an array to zero
 - matrix_rank:
           compute the rank of a matrix
 - orth:
           compute an orthonormal basis from a matrix (taken from
           ``scipy.linalg`` to avoid ``scipy`` dependence)
 - null:
           compute the null space of a matrix
 - norm_L2, norm_l2, norm_L1, norm_l1, norm_inf:
           discrete and continuous norms for multi-dimensional arrays
           viewed as vectors
 - compute_historgram:
           return x and y arrays of a histogram, given a vector of samples
 - seq:
           ``seq(a,b,s, [type])`` computes numbers from ``a`` up to and
           including ``b`` in steps of s and (default) type ``float_``;
 - iseq:
           as ``seq``, but integer counters are computed
           (``iseq`` is an alternative to range where the
           upper limit is included in the sequence - this can
           be important for direct mapping of indices between
           mathematics and Python code);
"""

if __name__.find('numpyutils') != -1:
    from numpy import *

#else if name is some other module name:
# this file is included in numpytools.py (through a preprocessing step)
# and the code below then relies on previously imported Numerical Python
# modules (Numeric, numpy, numarray)

import operator
from FloatComparison import float_eq, float_ne, float_lt, float_le, \
     float_gt, float_ge

def meshgrid(x=None, y=None, z=None, sparse=False, indexing='xy',
             memoryorder=None):
    """
    Extension of ``numpy.meshgrid`` to 1D, 2D and 3D problems, and also
    support of both "matrix" and "grid" numbering.

    This extended version makes 1D/2D/3D coordinate arrays for
    vectorized evaluations of 1D/2D/3D scalar/vector fields over
    1D/2D/3D grids, given one-dimensional coordinate arrays x, y,
    and/or, z.

    >>> x=linspace(0,1,3)        # coordinates along x axis
    >>> y=linspace(0,1,2)        # coordinates along y axis
    >>> xv, yv = meshgrid(x,y)   # extend x and y for a 2D xy grid
    >>> xv
    array([[ 0. ,  0.5,  1. ],
           [ 0. ,  0.5,  1. ]])
    >>> yv
    array([[ 0.,  0.,  0.],
           [ 1.,  1.,  1.]])
    >>> xv, yv = meshgrid(x,y, sparse=True)  # make sparse output arrays
    >>> xv
    array([[ 0. ,  0.5,  1. ]])
    >>> yv
    array([[ 0.],
           [ 1.]])

    >>> # 2D slice of a 3D grid, with z=const:
    >>> z=5
    >>> xv, yv, zc = meshgrid(x,y,z)
    >>> xv
    array([[ 0. ,  0.5,  1. ],
           [ 0. ,  0.5,  1. ]])
    >>> yv
    array([[ 0.,  0.,  0.],
           [ 1.,  1.,  1.]])
    >>> zc
    5

    >>> # 2D slice of a 3D grid, with x=const:
    >>> meshgrid(2,y,x)
    (2, array([[ 0.,  1.],
           [ 0.,  1.],
           [ 0.,  1.]]), array([[ 0. ,  0. ],
           [ 0.5,  0.5],
           [ 1. ,  1. ]]))
    >>> meshgrid(0,1,5, sparse=True)  # just a 3D point
    (0, 1, 5)
    >>> meshgrid(y)      # 1D grid; y is just returned
    array([ 0.,  1.])
    >>> meshgrid(x,y, indexing='ij')  # change to matrix indexing
    (array([[ 0. ,  0. ],
           [ 0.5,  0.5],
           [ 1. ,  1. ]]), array([[ 0.,  1.],
           [ 0.,  1.],
           [ 0.,  1.]]))

    Why does SciTools has its own meshgrid function when numpy has
    three similar functions, ``mgrid``, ``ogrid``, and ``meshgrid``?
    The ``meshgrid`` function in numpy is limited to two dimensions
    only, while the SciTools version can also work with 3D and 1D
    grids. In addition, the numpy version of ``meshgrid`` has no
    option for generating sparse grids to conserve memory, like we
    have in SciTools by specifying the ``sparse`` argument.

    Moreover, the numpy functions ``mgrid`` and ``ogrid`` does provide
    support for, respectively, full and sparse n-dimensional
    meshgrids, however, these functions uses slices to generate the
    meshgrids rather than one-dimensional coordinate arrays such as in
    Matlab. With slices, the user does not have the option to generate
    meshgrid with, e.g., irregular spacings, like::

    >>> x = array([-1,-0.5,1,4,5], float)
    >>> y = array([0,-2,-5], float)
    >>> xv, yv = meshgrid(x, y, sparse=False)

    >>> xv
    array([[-1. , -0.5,  1. ,  4. ,  5. ],
           [-1. , -0.5,  1. ,  4. ,  5. ],
           [-1. , -0.5,  1. ,  4. ,  5. ]])

    >>> yv
    array([[ 0.,  0.,  0.,  0.,  0.],
           [-2., -2., -2., -2., -2.],
           [-5., -5., -5., -5., -5.]])


    In addition to the reasons mentioned above, the ``meshgrid``
    function in numpy supports only Cartesian indexing, i.e., x and y,
    not matrix indexing, i.e., rows and columns (on the other hand,
    ``mgrid`` and ``ogrid`` supports only matrix indexing). The
    ``meshgrid`` function in SciTools supports both indexing
    conventions through the ``indexing`` keyword argument. Giving the
    string ``'ij'`` returns a meshgrid with matrix indexing, while
    ``'xy'`` returns a meshgrid with Cartesian indexing. The
    difference is illustrated by the following code snippet::

      nx = 10
      ny = 15

      x = linspace(-2,2,nx)
      y = linspace(-2,2,ny)

      xv, yv = meshgrid(x, y, sparse=False, indexing='ij')
      for i in range(nx):
          for j in range(ny):
              # treat xv[i,j], yv[i,j]

      xv, yv = meshgrid(x, y, sparse=False, indexing='xy')
      for i in range(nx):
          for j in range(ny):
              # treat xv[j,i], yv[j,i]

    It is not entirely true that matrix indexing is not supported by the
    ``meshgrid`` function in numpy because we can just switch the order of
    the first two input and output arguments::

    >>> yv, xv = numpy.meshgrid(y, x)
    >>> # same as:
    >>> xv, yv = meshgrid(x, y, indexing='ij')

    However, we think it is clearer to have the logical "x, y"
    sequence on the left-hand side and instead adjust a keyword argument.
    """

    import types
    def fixed(coor):
        return isinstance(coor, (float, complex, int, types.NoneType))

    if not fixed(x):
        x = asarray(x)
    if not fixed(y):
        y = asarray(y)
    if not fixed(z):
        z = asarray(z)

    def arr1D(coor):
        try:
            if len(coor.shape) == 1:
                return True
            else:
                return False
        except AttributeError:
            return False

    # if two of the arguments are fixed, we have a 1D grid, and
    # the third argument can be reused as is:

    if arr1D(x) and fixed(y) and fixed(z):
        return x
    if fixed(x) and arr1D(y) and fixed(z):
        return y
    if fixed(x) and fixed(y) and arr1D(z):
        return z

    # if x,y,z are identical, make copies:
    try:
        if y is x: y = x.copy()
        if z is x: z = x.copy()
        if z is y: z = y.copy()
    except AttributeError:  # x, y, or z not numpy array
        pass

    if memoryorder is not None:
        import warnings
        msg = "Keyword argument 'memoryorder' is deprecated and will be " \
              "removed in the future. Please use the 'indexing' keyword " \
              "argument instead."
        warnings.warn(msg, DeprecationWarning)
        if memoryorder == 'xyz':
            indexing = 'ij'
        else:
            indexing = 'xy'

    # If the keyword argument sparse is set to False, the full N-D matrix
    # (not only the 1-D vector) should be returned. The mult_fact variable
    # should then be updated as necessary.
    mult_fact = 1

    # if only one argument is fixed, we have a 2D grid:
    if arr1D(x) and arr1D(y) and fixed(z):
        if indexing == 'ij':
            if not sparse:
                mult_fact = ones((len(x),len(y)))
            if z is None:
                return x[:,newaxis]*mult_fact, y[newaxis,:]*mult_fact
            else:
                return x[:,newaxis]*mult_fact, y[newaxis,:]*mult_fact, z
        else:
            if not sparse:
                mult_fact = ones((len(y),len(x)))
            if z is None:
                return x[newaxis,:]*mult_fact, y[:,newaxis]*mult_fact
            else:
                return x[newaxis,:]*mult_fact, y[:,newaxis]*mult_fact, z

    if arr1D(x) and fixed(y) and arr1D(z):
        if indexing == 'ij':
            if not sparse:
                mult_fact = ones((len(x),len(z)))
            if y is None:
                return x[:,newaxis]*mult_fact, z[newaxis,:]*mult_fact
            else:
                return x[:,newaxis]*mult_fact, y, z[newaxis,:]*mult_fact
        else:
            if not sparse:
                mult_fact = ones((len(z),len(x)))
            if y is None:
                return x[newaxis,:]*mult_fact, z[:,newaxis]*mult_fact
            else:
                return x[newaxis,:]*mult_fact, y, z[:,newaxis]*mult_fact

    if fixed(x) and arr1D(y) and arr1D(z):
        if indexing == 'ij':
            if not sparse:
                mult_fact = ones((len(y),len(z)))
            if x is None:
                return y[:,newaxis]*mult_fact, z[newaxis,:]*mult_fact
            else:
                return x, y[:,newaxis]*mult_fact, z[newaxis,:]*mult_fact
        else:
            if not sparse:
                mult_fact = ones((len(z),len(y)))
            if x is None:
                return y[newaxis,:]*mult_fact, z[:,newaxis]*mult_fact
            else:
                return x, y[newaxis,:]*mult_fact, z[:,newaxis]*mult_fact

    # or maybe we have a full 3D grid:
    if arr1D(x) and arr1D(y) and arr1D(z):
        if indexing == 'ij':
            if not sparse:
                mult_fact = ones((len(x),len(y),len(z)))
            return x[:,newaxis,newaxis]*mult_fact, \
                   y[newaxis,:,newaxis]*mult_fact, \
                   z[newaxis,newaxis,:]*mult_fact
        else:
            if not sparse:
                mult_fact = ones((len(y),len(x),len(z)))
            return x[newaxis,:,newaxis]*mult_fact, \
                   y[:,newaxis,newaxis]*mult_fact, \
                   z[newaxis,newaxis,:]*mult_fact

    # at this stage we assume that we just have scalars:
    l = []
    if x is not None:
        l.append(x)
    if y is not None:
        l.append(y)
    if z is not None:
        l.append(z)
    if len(l) == 1:
        return l[0]
    else:
        return tuple(l)


def ndgrid(*args,**kwargs):
    """
    Same as calling ``meshgrid`` with *indexing* = ``'ij'`` (see
    ``meshgrid`` for documentation).
    """
    kwargs['indexing'] = 'ij'
    return meshgrid(*args,**kwargs)

def length(a):
    """Return the length of the largest dimension of array a."""
    return max(a.shape)

def cut_noise(a, tol=1E-10):
    """
    Set elements in array a to zero if the absolute value is
    less than tol.
    """
    a[abs(a) < tol] = 0
    return a


def Gram_Schmidt1(vecs, row_wise_storage=True):
    """
    Apply the Gram-Schmidt orthogonalization algorithm to a set
    of vectors. vecs is a two-dimensional array where the vectors
    are stored row-wise, or vecs may be a list of vectors, where
    each vector can be a list or a one-dimensional array.
    An array basis is returned, where basis[i,:] (row_wise_storage
    is True) or basis[:,i] (row_wise_storage is False) is the i-th
    orthonormal vector in the basis.

    This function does not handle null vectors, see Gram_Schmidt
    for a (slower) function that does.
    """
    from numpy.linalg import inv
    from math import sqrt

    vecs = asarray(vecs)  # transform to array if list of vectors
    m, n = vecs.shape
    basis = array(transpose(vecs))
    eye = identity(n).astype(float)

    basis[:,0] /= sqrt(dot(basis[:,0], basis[:,0]))
    for i in range(1, m):
	v = basis[:,i]/sqrt(dot(basis[:,i], basis[:,i]))
    	U = basis[:,:i]
	P = eye - dot(U, dot(inv(dot(transpose(U), U)), transpose(U)))
	basis[:, i] = dot(P, v)
	basis[:, i] /= sqrt(dot(basis[:, i], basis[:, i]))

    return transpose(basis) if row_wise_storage else basis


def Gram_Schmidt(vecs, row_wise_storage=True, tol=1E-10,
                 normalize=False, remove_null_vectors=False,
                 remove_noise=False):
    """
    Apply the Gram-Schmidt orthogonalization algorithm to a set
    of vectors. vecs is a two-dimensional array where the vectors
    are stored row-wise, or vecs may be a list of vectors, where
    each vector can be a list or a one-dimensional array.

    The argument tol is a tolerance for null vectors (the absolute
    value of all elements must be less than tol to have a null
    vector).

    If normalize is True, the orthogonal vectors are normalized to form
    an orthonormal basis.

    If remove_null_vectors is True, all null vectors are removed from
    the resulting basis.

    If remove_noise is True, all elements whose absolute values are
    less than tol are set to zero.

    An array basis is returned, where basis[i,:] (row_wise_storage
    is True) or basis[:,i] (row_wise_storage is False) is the i-th
    orthogonal vector in the basis.

    This function handles null vectors, see Gram_Schmidt1
    for a (faster) function that does not.
    """
    # The algorithm below views vecs as a matrix A with the vectors
    # stored as columns:
    vecs = asarray(vecs)  # transform to array if list of vectors
    if row_wise_storage:
        A = transpose(vecs).copy()
    else:
        A = vecs.copy()

    m, n = A.shape
    V = zeros((m,n))

    for j in xrange(n):
        v0 = A[:,j]
        v = v0.copy()
        for i in xrange(j):
            vi = V[:,i]

            if (abs(vi) > tol).any():
                v -= (vdot(v0,vi)/vdot(vi,vi))*vi
        V[:,j] = v

    if remove_null_vectors:
        indices = [i for i in xrange(n) if (abs(V[:,i]) < tol).all()]
        V = V[ix_(range(m), indices)]

    if normalize:
        for j in xrange(V.shape[1]):
            V[:,j] /= linalg.norm(V[:,j])

    if remove_noise:
        V = cut_noise(V, tol)

    return transpose(V) if row_wise_storage else V


def matrix_rank(A):
    """
    Returns the rank of a matrix A (rank means an estimate of
    the number of linearly independent rows or columns).
    """
    A = asarray(A)
    u, s, v = svd(A)
    maxabs = norm(x)
    maxdim = max(A.shape)
    tol = maxabs*maxdim*1E-13
    r = s > tol
    return sum(r)


def orth(A):
    """
    (Plain copy from scipy.linalg.orth - this one here applies numpy.svd
    and avoids the need for having scipy installed.)

    Construct an orthonormal basis for the range of A using SVD.

    @param A: array, shape (M, N)
    @return:
        Q : array, shape (M, K)
        Orthonormal basis for the range of A.
        K = effective rank of A, as determined by automatic cutoff

    see also svd (singular value decomposition of a matrix in scipy.linalg)
    """
    u,s,vh = svd(A)
    M,N = A.shape
    tol = max(M,N)*numpy.amax(s)*eps
    num = numpy.sum(s > tol,dtype=int)
    Q = u[:,:num]
    return Q


def null(A, tol=1e-10, row_wise_storage=True):
    """
    Return the null space of a matrix A.
    If row_wise_storage is True, a two-dimensional array where the
    vectors that span the null space are stored as rows, otherwise
    they are stored as columns.

    Code by Bastian Weber based on code by Robert Kern and Ryan Krauss.
    """
    n, m = A.shape
    if n > m :
        return transpose(null(transpose(A), tol))

    u, s, vh = linalg.svd(A)
    s = append(s, zeros(m))[0:m]
    null_mask = (s <= tol)
    null_space = compress(null_mask, vh, axis=0)
    null_space = conjugate(null_space)  # in case of complex values
    if row_wise_storage:
        return null_space
    else:
        return transpose(null_space)


class Heaviside:
    """Standard and smoothed Heaviside function."""

    def __init__(self, eps=0):
        self.eps = eps          # smoothing parameter

    def __call__(self, x):
        if self.eps == 0:
            r = x >= 0
            if isinstance(x, (int,float)):
                return int(r)
            elif isinstance(x, ndarray):
                return asarray(r, dtype=int)
        else:
            if isinstance(x, (int,float)):
                return self._smooth_scalar(x)
            elif isinstance(x, ndarray):
                return self._smooth_vec(x)

    def _exact_scalar(self, x):
        return 1 if x >= 0 else 0

    def _exact_bool(self, x):
        return x >= 0  # works for scalars and arrays, but returns bool

    def _exact_vec1(self, x):
        return where(x >= 0, 1, 0)

    def _exact_vec2(self, x):
        r = zeros_like(x)
        r[x >= 0] = 1
        return r

    def _smooth_scalar(self, x):
        eps = self.eps
        if x < -eps:
            return 0
        elif x > eps:
            return 1
        else:
            return 0.5 + x/(2*eps) + 1./(2*pi)*sin(pi*x/eps)

    def _smooth_vec(self, x):
        eps = self.eps
        r = zeros_like(x)
        condition1 = operator.and_(x >= -eps, x <= eps)
        xc = x[condition1]
        r[condition1] = 0.5 + xc/(2*eps) + 1./(2*pi)*sin(pi*xc/eps)
        r[x > eps] = 1
        return r

    def plot(self, center=0, xmin=-1, xmax=1):
        """
        Return arrays x, y for plotting the Heaviside function
        H(x-`center`) on [`xmin`, `xmax`]. For the exact
        Heaviside function,
        ``x = [xmin, center, center, xmax]; y = [0, 0, 1, 1]``,
        while for the smoothed version, the ``x`` array
        is computed on basis of the `eps` parameter.
        """
        if self.eps == 0:
            return [xmin, center, center, xmax], [0, 0, 1, 1]
        else:
            n = 200./self.eps
            x = concatenate(
                linspace(xmin, center-self.eps, 21),
                linspace(center-self.eps, center+self.eps, n+1),
                linspace(center+self.eps, xmax, 21))
            y = self(x)
            return x, y


class DiracDelta:
    """
    Smoothed Dirac delta function:
    $\frac{1}{2\epsilon}(1 + \cos(\pi x/\epsilon)$ when
    $x\in [-\epsilon, \epsilon]$ and 0 elsewhere.
    """
    def __init__(self, eps, vectorized=False):
        self.eps = eps
        if self.eps == 0:
            raise ValueError('eps=0 is not allowed in class DiracDelta.')

    def __call__(self, x):
        if isinstance(x, (float, int)):
            return _smooth(x)
        elif isinstance(x, ndarray):
            return _smooth_vec(x)
        else:
            raise TypeError('%s x is wrong' % type(x))

    def _smooth(self, x):
        eps = self.eps
        if x < -eps or x > eps:
            return 0
        else:
            return 1./(2*eps)*(1 + cos(pi*x/eps))

    def _smooth_vec(self, x):
        eps = self.eps
        r = zeros_like(x)
        condition1 - operator.and_(x >= -eps, x <= eps)
        xc = x[condition1]
        r[condition1] = 1./(2*eps)*(1 + cos(pi*xc/eps))
        return r

    def plot(self, center=0, xmin=-1, xmax=1):
        """
        Return arrays x, y for plotting the DiracDelta function
        centered in `center` on the interval [`xmin`, `xmax`].
        """
        n = 200./self.eps
        x = concatenate(
            linspace(xmin, center-self.eps, 21),
            linspace(center-self.eps, center+self.eps, n+1),
            linspace(center+self.eps, xmax, 21))
        y = self(x)
        return x, y

class IndicatorFunction:
    """
    Indicator function $I(x; L, R)$, which is 1 in $[L, R]$, and 0
    outside. Two parameters ``eps_L`` and ``eps_R`` can be set
    to provide smoothing of the left and/or right discontinuity
    in the indicator function. The indicator function is
    defined in terms of the Heaviside function (using class
    :class:`Heaviside`): $I(x; R, L) = H(x-L)H(R-x)$.
    """
    def __init__(self, interval, eps_L=0, eps_R=0):
        """
        `interval` is a 2-tuple/list defining the interval [L, R] where
        the indicator function is 1.
        `eps` is a smoothing parameter: ``eps=0`` gives the standard
        discontinuous indicator function, while a value different
        from 0 gives rapid change from 0 to 1 over an interval of
        length 2*`eps`.
        """
        self.L, self.R = interval
        self.eps_L, self.eps_R = eps_L, eps_R
        self.Heaviside_L = Heaviside(eps_L)
        self.Heaviside_R = Heaviside(eps_R)

    def __call__(self, x):
        if self.eps_L == 0 and self.eps_R == 0:
            # Avoid using Heaviside functions since we want 1
            # as value for x in [L,R) (important when indicator
            # functions are added)
            tol = 1E-10
            if isinstance(x, (float, int)):
                #return 0 if x < self.L or x >= self.R else 1
                return 0 if x < self.L or x > self.R else 1
            elif isinstance(x, ndarray):
                r = ones_like(x)
                r[x < self.L] = 0
                #r[x >= self.R] = 0
                r[x > self.R] = 0
                return r
        else:
            return self.Heaviside_L(x - self.L)*self.Heaviside_R(self.R - x)

    def plot(self, xmin=-1, xmax=1):
        """
        Return arrays x, y for plotting IndicatorFunction
        on [`xmin`, `xmax`]. For the exact discontinuous
        indicator function, we typically have
        ``x = [xmin, L, L, R, R, xmax]; y = [0, 0, 1, 1, 0, 0]``,
        while for the smoothed version, the densities of
        coordinates in the ``x`` array is computed on basis of the
        `eps` parameter.
        """
        if xmin > self.L or xmax < self.R:
            raise ValueError('xmin=%g > L=%g or xmax=%g < R=%g is meaningless for plot' % (xmin, self.L, xmax, self.R))

        if self.eps == 0:
            return [xmin, L, L, R, R, xmax], [0, 0, 1, 1, 0, 0]
        else:
            n = 200./self.eps
            x = concatenate(
                linspace(xmin, self.L-self.eps, 21),
                linspace(self.L-self.eps, self.R+self.eps, n+1),
                linspace(self.R+self.eps, xmax, 21))
            y = self(x)
            return x, y

    def __str__(self):
        e = 'eps=%g' % self.eps if self.eps else ''
        return 'I(x)=1 on [%g, %g] %s' % (self.L, self.R, e)

    def __repr__(self):
        return 'IndicatorFunction([%g, %g], eps=%g)' % \
               (self.L, self.R, self.eps)

class PiecewiseConstant:
    """
    Representation of a piecewise constant function.
    The discontinuities can be smoothed out.
    In this latter case the piecewise constant function is represented
    as a sum of indicator functions (:class:`IndicatorFunction`)
    times corresponding values.
    """
    def __init__(self, domain, data, eps=0):
        self.L, self.R = domain
        self.data = data
        self.eps = eps
        if self.L != self.data[0][0]:
            raise ValueError('domain starts at %g, while data[0][0]=%g' % \
                             (self.L, self.data[0][0]))
        self._boundaries = [x for x, value in data]
        self._boundaries.append(self.R)
        self._values = [value for x, value in data]
        self._boundaries = array(self._boundaries, float)
        self._values = array(self._values, float)

        self._indicator_functions = []
        # Ensure eps_L=0 at the left and eps_R=0 at the right,
        # while both are eps at internal boundaries,
        # i.e., the function is always discontinuous at the start and end
        for i in range(len(self.data)):
            if i == 0:
                eps_L = 0; eps_R = eps  # left boundary
            elif i == len(self.data)-1:
                eps_R = 0; eps_L = eps  # right boundary
            else:
                eps_L = eps_R = eps     # internal boundary
            self._indicator_functions.append(IndicatorFunction(
                [self._boundaries[i], self._boundaries[i+1]],
                 eps_L=eps_L, eps_R=eps_R))

    def __call__(self, x):
        if self.eps == 0:
            return self.value(x)
        else:
            return sum(value*I(x) \
                       for I, value in \
                       zip(self._indicator_functions, self._values))

    def value(self, x):
        """Alternative implementation to __call__."""
        if isinstance(x, (float,int)):
            return self._values[x >= self._boundaries[:-1]][-1]
        else:
            a = array([self._values[xi >= self._boundaries[:-1]][-1]
                       for xi in x])
            return a

    def plot(self):
        if self.eps == 0:
            x = []; y = []
            for I, value in zip(self._indicator_functions, self._values):
                x.append(I.L)
                y.append(value)
                x.append(I.R)
                y.append(value)
            return x, y
        else:
            n = 200/self.eps
            if len(self.data) == 1:
                return [self.L, self.R], [self._values[0], self._values[0]]
            else:
                x = [linspace(self.data[0][0], self.data[1][0]-self.eps, 21)]
                # Iterate over all internal discontinuities
                for I in self._indicator_functions[1:]:
                    x.append(linspace(I.L-self.eps, I.L+self.eps, n+1))
                    x.append(linspace(I.L+self.eps, I.R-self.eps, 21))
                # Last part
                x.append(linspace(I.R-self.eps, I.R, 3))
                x = concatenate(x)
                y = self(x)
                return x, y


# the norm_* functions also work for arrays with dimensions larger than 2,
# in contrast to (most of) the numpy.linalg.norm functions

def norm_l2(u):
    """
    Standard l2 norm of a multi-dimensional array u viewed as a vector.
    """
    return linalg.norm(u.ravel())

def norm_L2(u):
    """
    L2 norm of a multi-dimensional array u viewed as a vector
    (norm is norm_l2/n, where n is length of u (no of elements)).

    If u holds function values and the norm of u is supposed to
    approximate an integral (L2 norm) of the function, this (and
    not norm_l2) is the right norm function to use.
    """
    return norm_l2(u)/sqrt(float(u.size))

def norm_l1(u):
    """
    l1 norm of a multi-dimensional array u viewed as a vector:
    ``linalg.norm(u.ravel(),1)``.
    """
    #return sum(abs(u.ravel()))
    return linalg.norm(u.ravel(),1)

def norm_L1(u):
    """
    L1 norm of a multi-dimensional array u viewed as a vector:
    ``norm_l1(u)/float(u.size)``.

    If *u* holds function values and the norm of u is supposed to
    approximate an integral (L1 norm) of the function, this (and
    not norm_l1) is the right norm function to use.
    """
    return norm_l1(u)/float(u.size)

def norm_inf(u):
    """Infinity/max norm of a multi-dimensional array u viewed as a vector."""
    #return abs(u.ravel()).max()
    return linalg.norm(u.ravel(), inf)


def solve_tridiag_linear_system(A, b):
    """
    Solve an n times n tridiagonal linear system of the form::

     A[0,1]*x[0] + A[0,2]*x[1]                                        = 0
     A[1,0]*x[0] + A[1,1]*x[1] + A[1,2]*x[2]                          = 0
     ...
     ...
              A[k,0]*x[k-1] + A[k,1]*x[k] + A[k,2]*x[k+1]             = 0
     ...
                  A[n-2,0]*x[n-3] + A[n-2,1]*x[n-2] + A[n-2,2]*x[n-1] = 0
     ...
                                    A[n-1,0]*x[n-2] + A[n-1,1]*x[n-1] = 0

    The diagonal of the coefficent matrix is stored in A[:,1],
    the subdiagonal is stored in A[1:,0], and the superdiagonal
    is stored in A[:-1,2].
    """

    #The storage is not memory friendly in Python/C (diagonals stored
    #columnwise in A), but if A is sent to F77 for high-performance
    #computing, a copy is taken and the F77 routine works with the
    #same algorithm and hence optimal (columnwise traversal)
    #Fortran storage.

    c, d = factorize_tridiag_matrix(A)
    return solve_tridiag_factored_system(b, A, c, d)


def factorize_tridiag_matrix(A):
    """
    Perform the factorization step only in solving a tridiagonal
    linear system. See the function solve_tridiag_linear_system
    for how the matrix *A* is stored.
    Two arrays, *c* and *d*, are returned, and these represent,
    together with superdiagonal *A[:-1,2]*, the factorized form of
    *A*. To solve a system with ``solve_tridiag_factored_system``,
    *A*, *c*, and *d* must be passed as arguments.
    """
    n = len(b)
    # scratch arrays:
    d = zeros(n, 'd');  c = zeros(n, 'd');  m = zeros(n, 'd')

    d[0] = A[0,1]
    c[0] = b[0]

    for k in iseq(start=1, stop=n-1, inc=1):
        m[k] = A[k,0]/d[k-1]
        d[k] = A[k,1] - m[k]*A[k-1,2]
        c[k] = b[k] - m[k]*c[k-1]
    return c, d


def solve_tridiag_factored_system(b, A, c, d):
    """
    The backsubsitution part of solving a tridiagonal linear system.
    The right-hand side is b, while *A*, *c*, and *d* represent the
    factored matrix (see the factorize_tridiag_matrix function).
    The solution x to A*x=b is returned.
    """
    n = len(b)
    x = zeros(n, 'd')  # solution

    # back substitution:
    x[n-1] = c[n-1]/d[n-1]
    for k in iseq(start=n-2, stop=0, inc=-1):
        x[k] = (c[k] - A[k,2]*x[k+1])/d[k]
    return x



try:
    import Pmw
    class NumPy2BltVector(Pmw.Blt.Vector):
        """
        Copy a numpy array to a BLT vector:
        # a: some numpy array
        b = NumPy2BltVector(a)  # b is BLT vector
        g = Pmw.Blt.Graph(someframe)
        # send b to g for plotting
        """
        def __init__(self, array):
            Pmw.Blt.Vector.__init__(self, len(array))
            self.set(tuple(array))  # copy elements
except:
    class NumPy2BltVector:
        def __init__(self, array):
            raise ImportError("Python is not working properly with BLT")

try:
    from scitools.StringFunction import StringFunction
except:
    pass  # wrap2callable may not work


class WrapNo2Callable:
    """Turn a number (constant) into a callable function."""
    def __init__(self, constant):
        self.constant = constant
        self._array_shape = None

    def __call__(self, *args):
        """
        >>> w = WrapNo2Callable(4.4)
        >>> w(99)
        4.4000000000000004
        >>> # try vectorized computations:
        >>> x = linspace(1, 4, 4)
        >>> y = linspace(1, 2, 2)
        >>> xv = x[:,NewAxis]; yv = y[NewAxis,:]
        >>> xv + yv
        array([[ 2.,  3.],
               [ 3.,  4.],
               [ 4.,  5.],
               [ 5.,  6.]])
        >>> w(xv, yv)
        array([[ 4.4,  4.4],
               [ 4.4,  4.4],
               [ 4.4,  4.4],
               [ 4.4,  4.4]])

        If you want to call such a function object with space-time
        arguments and vectorized expressions, make sure the time
        argument is not the first argument. That is,
        w(xv, yv, t) is fine, but w(t, xv, yv) will return 4.4,
        not the desired array!
        """
        if isinstance(args[0], (float, int, complex)):
            # scalar version:
            # (operator.isNumberType(args[0]) cannot be used as it is
            # true also for numpy arrays
            return self.constant
        else: # assume numpy array
            if self._array_shape is None:
                self._set_array_shape()
            else:
                r = self.constant*ones(self._array_shape, 'd')
                # could store r (allocated once) and just return reference
                return r

    def _set_array_shape(self, arg):
        # vectorized version:
        r = arg.copy()
        # to get right dimension of the return array,
        # compute with args in a simple formula (sum of args)
        for a in args[1:]:
            r = r + a  # in-place r+= won't work
            # (handles x,y,t - the last t just adds a constant)
            # an argument sequence t, x, y  will fail (1st arg
            # is not a numpy array)
        self._array_shape = r.shape

    # The problem with this class is that, in the vectorized version,
    # the array shape is determined in the first call, i.e., later
    # calls may return an array with the wrong shape if the shape of
    # the input arguments change! Sometimes, when called along boundaries
    # of grids, the shape may change so the next implementation is
    # slower and safer.

class WrapNo2Callable:
    """Turn a number (constant) into a callable function."""
    def __init__(self, constant):
        self.constant = constant

    def __call__(self, *args):
        """
        >>> w = WrapNo2Callable(4.4)
        >>> w(99)
        4.4000000000000004
        >>> # try vectorized computations:
        >>> x = linspace(1, 4, 4)
        >>> y = linspace(1, 2, 2)
        >>> xv = x[:,NewAxis]; yv = y[NewAxis,:]
        >>> xv + yv
        array([[ 2.,  3.],
               [ 3.,  4.],
               [ 4.,  5.],
               [ 5.,  6.]])
        >>> w(xv, yv)
        array([[ 4.4,  4.4],
               [ 4.4,  4.4],
               [ 4.4,  4.4],
               [ 4.4,  4.4]])

        If you want to call such a function object with space-time
        arguments and vectorized expressions, make sure the time
        argument is not the first argument. That is,
        w(xv, yv, t) is fine, but w(t, xv, yv) will return 4.4,
        not the desired array!

        """
        if isinstance(args[0], (float, int, complex)):
            # scalar version:
            return self.constant
        else:
            # vectorized version:
            r = args[0].copy()
            # to get right dimension of the return array,
            # compute with args in a simple formula (sum of args)
            for a in args[1:]:
                r = r + a  # in-place r+= won't work
                # (handles x,y,t - the last t just adds a constant)
            r[:] = self.constant
            return r


class WrapDiscreteData2Callable:
    """
    Turn discrete data on a uniform grid into a callable function,
    i.e., equip the data with an interpolation function.

    >>> x = linspace(0, 1, 11)
    >>> y = 1+2*x
    >>> f = WrapDiscreteData2Callable((x,y))
    >>> # or just use the wrap2callable generic function:
    >>> f = wrap2callable((x,y))
    >>> f(0.5)   # evaluate f(x) by interpolation
    1.5
    >>> f(0.5, 0.1)  # discrete data with extra time prm: f(x,t)
    1.5
    """
    def __init__(self, data):
        self.data = data  # (x,y,f) data for an f(x,y) function

        from scitools.misc import import_module
        InterpolatingFunction = import_module(
            'Scientific.Functions.Interpolation', 'InterpolatingFunction')
        import Scientific
        v = Scientific.__version__
        target = '2.9.1'
        if v < target:
            raise ImportError(
                'ScientificPython is in (old) version %s, need %s' \
                % (v, target))

        self.interpolating_function = \
             InterpolatingFunction(self.data[:-1], self.data[-1])
        self.ndims = len(self.data[:-1])  # no of spatial dim.

    def __call__(self, *args):
        # allow more arguments (typically time) after spatial pos.:
        args = args[:self.ndims]
        # args can be tuple of scalars (point) or tuple of vectors
        if isinstance(args[0], (float, int, complex)):
            return self.interpolating_function(*args)
        else:
            # args is tuple of vectors; Interpolation must work
            # with one point at a time:
            r = [self.interpolating_function(*a) for a in zip(*args)]
            return array(r)  # wrap in numpy array


def wrap2callable(f, **kwargs):
    """
    Allow constants, string formulas, discrete data points,
    user-defined functions and (callable) classes to be wrapped
    in a new callable function. That is, all the mentioned data
    structures can be used as a function, usually of space and/or
    time.
    (kwargs is used for string formulas)

    >>> f1 = wrap2callable(2.0)
    >>> f1(0.5)
    2.0
    >>> f2 = wrap2callable('1+2*x')
    >>> f2(0.5)
    2.0
    >>> f3 = wrap2callable('1+2*t', independent_variable='t')
    >>> f3(0.5)
    2.0
    >>> f4 = wrap2callable('a+b*t')
    >>> f4(0.5)
    Traceback (most recent call last):
    ...
    NameError: name 'a' is not defined
    >>> f4 = wrap2callable('a+b*t', independent_variable='t', a=1, b=2)
    >>> f4(0.5)
    2.0

    >>> x = linspace(0, 1, 3); y=1+2*x
    >>> f5 = wrap2callable((x,y))
    >>> f5(0.5)
    2.0
    >>> def myfunc(x):  return 1+2*x
    >>> f6 = wrap2callable(myfunc)
    >>> f6(0.5)
    2.0
    >>> f7 = wrap2callable(lambda x: 1+2*x)
    >>> f7(0.5)
    2.0
    >>> class MyClass:
            'Representation of a function f(x; a, b) =a + b*x'
            def __init__(self, a=1, b=1):
                self.a = a;  self.b = b
            def __call__(self, x):
                return self.a + self.b*x
    >>> myclass = MyClass(a=1, b=2)
    >>> f8 = wrap2callable(myclass)
    >>> f8(0.5)
    2.0
    >>> # 3D functions:
    >>> f9 = wrap2callable('1+2*x+3*y+4*z', independent_variables=('x','y','z'))
    >>> f9(0.5,1/3.,0.25)
    4.0
    >>> # discrete 3D data:
    >>> y = linspace(0, 1, 3); z = linspace(-1, 0.5, 16)
    >>> xv = reshape(x, (len(x),1,1))
    >>> yv = reshape(y, (1,len(y),1))
    >>> zv = reshape(z, (1,1,len(z)))
    >>> def myfunc3(x,y,z):  return 1+2*x+3*y+4*z

    >>> values = myfunc3(xv, yv, zv)
    >>> f10 = wrap2callable((x, y, z, values))
    >>> f10(0.5, 1/3., 0.25)
    4.0

    One can also check what the object is wrapped as and do more
    specific operations, e.g.,

    >>> f9.__class__.__name__
    'StringFunction'
    >>> str(f9)     # look at function formula
    '1+2*x+3*y+4*z'
    >>> f8.__class__.__name__
    'MyClass'
    >>> f8.a, f8.b  # access MyClass-specific data
    (1, 2)

    Troubleshooting regarding string functions:
    If you use a string formula with a numpy array, you typically get
    error messages like::

       TypeError: only rank-0 arrays can be converted to Python scalars.

    You must then make the right import (numpy is recommended)::

       from Numeric/numarray/numpy/scitools.numpytools import *

    in the calling code and supply the keyword argument::

       globals=globals()

    to wrap2callable. See also the documentation of class StringFunction
    for more information.
    """
    if isinstance(f, str):
        return StringFunction(f, **kwargs)
        # this is a considerable optimization (up to a factor of 3),
        # but then the additional info in the StringFunction instance
        # is lost in the calling code:
        # return StringFunction(f, **kwargs).__call__
    elif isinstance(f, (float, int, complex)):
        return WrapNo2Callable(f)
    elif isinstance(f, (list,tuple)):
        return WrapDiscreteData2Callable(f)
    elif callable(f):
        return f
    else:
        raise TypeError('f of type %s is not callable' % type(f))


# problem: setitem in ArrayGen does not support multiple indices
# relying on inherited __setitem__ works fine

def NumPy_array_iterator(a, **kwargs):
    """
    Iterate over all elements in a numpy array a.
    Two return values: a generator function and the code of this function.
    The ``numpy.ndenumerate`` iterator performs the same iteration over
    an array, but ``NumPy_array_iterator`` has some additional features
    (especially handy for coding finite difference stencils, see next
    paragraph).

    The keyword arguments specify offsets in the start and stop value
    of the index in each dimension. Legal argument names are
    ``offset0_start``, ``offset0_stop``, ``offset1_start``,
    ``offset1_stop``, etc.  Also ``offset_start`` and ``offset_stop``
    are legal keyword arguments, these imply the same offset value for
    all dimensions.

    Another keyword argument is ``no_value``, which can be True or False.
    If the value is True, the iterator returns the indices as a tuple,
    otherwise (default) the iterator returns a two-tuple consisting of
    the value of the array and the corresponding indices (as a tuple).

    Examples::

    >>> q = linspace(1, 2*3*4, 2*3*4);  q.shape = (2,3,4)
    >>> it, code = NumPy_array_iterator(q)

    >>> print code  # generator function with 3 nested loops:
    def nested_loops(a):
        for i0 in xrange(0, a.shape[0]-0):
            for i1 in xrange(0, a.shape[1]-0):
                for i2 in xrange(0, a.shape[2]-0):
                    yield a[i0, i1, i2], (i0, i1, i2)

    >>> type(it)
    <type 'function'>
    >>> for value, index in it(q):
    ...     print 'a%s = %g' % (index, value)
    ...
    a(0, 0, 0) = 1
    a(0, 0, 1) = 2
    a(0, 0, 2) = 3
    a(0, 0, 3) = 4
    a(0, 1, 0) = 5
    a(0, 1, 1) = 6
    a(0, 1, 2) = 7
    a(0, 1, 3) = 8
    a(0, 2, 0) = 9
    a(0, 2, 1) = 10
    a(0, 2, 2) = 11
    a(0, 2, 3) = 12
    a(1, 0, 0) = 13
    a(1, 0, 1) = 14
    a(1, 0, 2) = 15
    a(1, 0, 3) = 16
    a(1, 1, 0) = 17
    a(1, 1, 1) = 18
    a(1, 1, 2) = 19
    a(1, 1, 3) = 20
    a(1, 2, 0) = 21
    a(1, 2, 1) = 22
    a(1, 2, 2) = 23
    a(1, 2, 3) = 24

    Here is the version where only the indices and no the values
    are returned by the iterator::

    >>> q = linspace(1, 1*3, 3);  q.shape = (1,3)
    >>> it, code = NumPy_array_iterator(q, no_value=True)

    >>> print code
    def nested_loops(a):
        for i0 in xrange(0, a.shape[0]-0):
            for i1 in xrange(0, a.shape[1]-0):
                yield i0, i1

    >>> for i,j in it(q):
    ...   print i,j
    0 0
    0 1
    0 2


    Now let us try some offsets::

    >>> it, code = NumPy_array_iterator(q, offset1_stop=1, offset_start=1)

    >>> print code
    def nested_loops(a):
        for i0 in xrange(1, a.shape[0]-0):
            for i1 in xrange(1, a.shape[1]-1):
                for i2 in xrange(1, a.shape[2]-0):
                    yield a[i0, i1, i2], (i0, i1, i2)

    >>> # note: the offsets appear in the xrange arguments
    >>> for value, index in it(q):
    ...     print 'a%s = %g' % (index, value)
    ...
    a(1, 1, 1) = 18
    a(1, 1, 2) = 19
    a(1, 1, 3) = 20

    """
    # build the code of the generator function in a text string
    # (since the number of nested loops needed to iterate over all
    # elements are parameterized through len(a.shape))
    dims = range(len(a.shape))
    offset_code1 = ['offset%d_start=0' % d for d in dims]
    offset_code2 = ['offset%d_stop=0'  % d for d in dims]
    for d in range(len(a.shape)):
        key1 = 'offset%d_start' % d
        key2 = 'offset%d_stop' % d
        if key1 in kwargs:
            offset_code1.append(key1 + '=' + str(kwargs[key1]))
        if key2 in kwargs:
            offset_code2.append(key2 + '=' + str(kwargs[key2]))

    for key in kwargs:
        if key == 'offset_start':
            offset_code1.extend(['offset%d_start=%d' % (d, kwargs[key]) \
                            for d in range(len(a.shape))])
        if key == 'offset_stop':
            offset_code2.extend(['offset%d_stop=%d' % (d, kwargs[key]) \
                            for d in range(len(a.shape))])

    no_value = kwargs.get('no_value', False)

    for line in offset_code1:
        exec line
    for line in offset_code2:
        exec line
    code = 'def nested_loops(a):\n'
    indentation = ' '*4
    indent = '' + indentation
    for dim in range(len(a.shape)):
        code += indent + \
        'for i%d in xrange(%d, a.shape[%d]-%d):\n' \
                % (dim, eval('offset%d_start' % dim),
                   dim, eval('offset%d_stop' % dim))
        indent += indentation
    index = ', '.join(['i%d' % d for d in range(len(a.shape))])
    if no_value:
        code += indent + 'yield ' + index
    else:
        code += indent + 'yield ' + 'a[%s]' % index + ', (' + index + ')'
    exec code
    return nested_loops, code

def compute_histogram(samples, nbins=50, piecewise_constant=True):
    """
    Given a numpy array samples with random samples, this function
    returns the (x,y) arrays in a plot-ready version of the histogram.
    If piecewise_constant is True, the (x,y) arrays gives a piecewise
    constant curve when plotted, otherwise the (x,y) arrays gives a
    piecewise linear curve where the x coordinates coincide with the
    center points in each bin. The function makes use of
    numpy.lib.function_base.histogram with some additional code
    (for a piecewise curve or displaced x values to the centes of
    the bins).
    """
    import sys
    if 'numpy' in sys.modules:
        y0, bin_edges = histogram(samples, bins=nbins, normed=True)
    h = bin_edges[1] - bin_edges[0]  # bin width
    if piecewise_constant:
        x = zeros(2*len(bin_edges), type(bin_edges[0]))
        y = x.copy()
        x[0] = bin_edges[0]
        y[0] = 0
        for i in range(len(bin_edges)-1):
            x[2*i+1] = bin_edges[i]
            x[2*i+2] = bin_edges[i+1]
            y[2*i+1] = y0[i]
            y[2*i+2] = y0[i]
        x[-1] = bin_edges[-1]
        y[-1] = 0
    else:
        x = zeros(len(bin_edges)-1, type(bin_edges[0]))
        y = y0.copy()
        for i in range(len(x)):
            x[i] = (bin_edges[i] + bin_edges[i+1])/2.0
    return x, y


def factorial(n, method='reduce'):
    """
    Compute the factorial n! using long integers (and pure Python code).
    Different implementations are available (see source code for
    implementation details).

    Note: The math module in Python 2.6 features a factorial
    function, making the present function redundant (except that
    the various pure Python implementations can be of interest
    for comparison).

    Here is an efficiency comparison of the methods (computing 80!):

    ==========================   =====================
            Method                Normalized CPU time
    ==========================   =====================
    reduce                             1.00
    lambda list comprehension          1.70
    lambda functional                  3.08
    plain recursive                    5.83
    lambda recursive                  21.73
    scipy                            131.18
    ==========================   =====================

    """
    if not isinstance(n, (int, long, float)):
        raise TypeError('factorial(n): n must be integer not %s' % type(n))
    n = long(n)

    if n == 0 or n == 1:
        return 1

    if method == 'plain iterative':
        f = 1
        for i in range(1, n+1):
            f *= i
        return f
    elif method == 'plain recursive':
        if n == 1:
            return 1
        else:
            return n*factorial(n-1, method)
    elif method == 'lambda recursive':
        fc = lambda n: n and fc(n-1)*long(n) or 1
        return fc(n)
    elif method == 'lambda functional':
        fc = lambda n: n<=0 or \
             reduce(lambda a,b: long(a)*long(b), xrange(1,n+1))
        return fc(n)
    elif method == 'lambda list comprehension':
        fc = lambda n: [j for j in [1] for i in range(2,n+1) \
                        for j in [j*i]] [-1]
        return fc(n)
    elif method == 'reduce':
        return reduce(operator.mul, xrange(2, n+1))
    elif method == 'scipy':
        try:
            import scipy.misc.common as sc
            return sc.factorial(n)
        except ImportError:
            print 'numpyutils.factorial: scipy is not available'
            print 'default method="reduce" is used instead'
            return reduce(operator.mul, xrange(2, n+1))
            # or return factorial(n)
    else:
        raise ValueError('factorial: method="%s" is not supported' % method)


def asarray_cpwarn(a, dtype=None, message='warning', comment=''):
    """
    As asarray, but a warning or exception is issued if the
    a array is copied.
    """
    a_new = asarray(a, dtype)
    # must drop numpy's order argument since it conflicts
    # with Numeric's savespace

    # did we copy?
    if a_new is not a:
        # we do not return the identical array, i.e., copy has taken place
        msg = '%s  copy of array %s, from %s to %s' % \
              (comment, a.shape, type(a), type(a_new))
        if message == 'warning':
            print 'Warning: %s' % msg
        elif message == 'exception':
            raise TypeError(msg)
    return a_new


def seq(min=0.0, max=None, inc=1.0, type=float,
        return_type='NumPyArray'):
    """
    Generate numbers from min to (and including!) max,
    with increment of inc. Safe alternative to arange.
    The return_type string governs the type of the returned
    sequence of numbers ('NumPyArray', 'list', or 'tuple').
    """
    if max is None: # allow sequence(3) to be 0., 1., 2., 3.
        # take 1st arg as max, min as 0, and inc=1
        max = min; min = 0.0; inc = 1.0
    r = arange(min, max + inc/2.0, inc, type)
    if return_type == 'NumPyArray' or return_type == ndarray:
        return r
    elif return_type == 'list':
        return r.tolist()
    elif return_type == 'tuple':
        return tuple(r.tolist())


def iseq(start=0, stop=None, inc=1):
    """
    Generate integers from start to (and including) stop,
    with increment of inc. Alternative to range/xrange.
    """
    if stop is None: # allow isequence(3) to be 0, 1, 2, 3
        # take 1st arg as stop, start as 0, and inc=1
        stop = start; start = 0; inc = 1
    return xrange(start, stop+inc, inc)

sequence = seq  # backward compatibility
isequence = iseq  # backward compatibility


def arr(shape=None, element_type=float,
        interval=None,
        data=None, copy=True,
        file_=None,
        order='C'):
    """
    Compact and flexible interface for creating numpy arrays,
    including several consistency and error checks.

     - *shape*: length of each dimension, tuple or int
     - *data*: list, tuple, or numpy array with data elements
     - *copy*: copy data if true, share data if false, boolean
     - *element_type*: float, int, int16, float64, bool, etc.
     - *interval*: make elements from a to b (shape gives no of elms), tuple or list
     - *file_*: filename or file object containing array data, string
     - *order*: 'Fortran' or 'C' storage, string
     - return value: created Numerical Python array

    The array can be created in four ways:

      1. as zeros (just shape specified),

      2. as uniformly spaced coordinates in an interval [a,b]

      3. as a copy of or reference to (depending on copy=True,False resp.)
         a list, tuple, or numpy array (provided as the data argument),

      4. from data in a file (for one- or two-dimensional real-valued arrays).

    The function calls the underlying numpy functions zeros, array and
    linspace (see the numpy manual for the functionality of these
    functions).  In case of data in a file, the first line determines
    the number of columns in the array. The file format is just rows
    and columns with numbers, no decorations (square brackets, commas,
    etc.) are allowed.

    >>> arr((3,4))
    array([[ 0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.]])

    >>> arr(4, element_type=int) + 4  # integer array
    array([4, 4, 4, 4])

    >>> arr(3, interval=[0,2])
    array([ 0.,  1.,  2.])

    >>> somelist=[[0,1],[5,5]]
    >>> a = arr(data=somelist)
    >>> a  # a has always float elements by default
    array([[ 0.,  1.],
           [ 5.,  5.]])
    >>> a = arr(data=somelist, element_type=int)
    >>> a
    array([[0, 1],
           [5, 5]])
    >>> b = a + 1

    >>> c = arr(data=b, copy=False)  # let c share data with b
    >>> b is c
    True
    >>> id(b) == id(c)
    True

    >>> # make a file with array data:
    >>> f = open('tmp.dat', 'w')
    >>> f.write('''\
    ... 1 3
    ... 2 6
    ... 3 12
    ... 3.5 20
    ... ''')
    >>> f.close()
    >>> # read array data from file:
    >>> a = arr(file_='tmp.dat')
    >>> a
    array([[  1. ,   3. ],
           [  2. ,   6. ],
           [  3. ,  12. ],
           [  3.5,  20. ]])
    """
    if data is None and file_ is None and shape is None:
        return None

    if data is not None:

        if not operator.isSequenceType(data):
            raise TypeError('arr: data argument is not a sequence type')

        if isinstance(shape, (list,tuple)):
            # check that shape and data are compatible:
            if reduce(operator.mul, shape) != size(data):
                raise ValueError(
                    'arr: shape=%s is not compatible with %d '\
                    'elements in the provided data' % (shape, size(data)))
        elif isinstance(shape, int):
            if shape != size(data):
                raise ValueError(
                    'arr: shape=%d is not compatible with %d '\
                    'elements in the provided data' % (shape, size(data)))
        elif shape is None:
            if isinstance(data, (list,tuple)) and copy == False:
                # cannot share data (data is list/tuple)
                copy = True
            return array(data, dtype=element_type, copy=copy, order=order)
        else:
            raise TypeError(
                'shape is %s, must be list/tuple or int' % type(shape))
    elif file_ is not None:
        if not isinstance(file_, (basestring, file, StringIO)):
            raise TypeError(
                'file_ argument must be a string (filename) or '\
                'open file object, not %s' % type(file_))

        if isinstance(file_, basestring):
            file_ = open(file_, 'r')
        # skip blank lines:
        while True:
            line1 = file_.readline().strip()
            if line1 != '':
                break
        ncolumns = len(line1.split())
        file_.seek(0)
        # we assume that array data in file has element_type=float:
        if not (element_type == float or element_type == 'd'):
            raise ValueError('element_type must be float_/"%s", not "%s"' % \
                             ('d', element_type))

        d = array([float(word) for word in file_.read().split()])
        if isinstance(file_, basestring):
            f.close()
        # shape array d:
        if ncolumns > 1:
            suggested_shape = (int(len(d)/ncolumns), ncolumns)
            total_size = suggested_shape[0]*suggested_shape[1]
            if total_size != len(d):
                raise ValueError(
                    'found %d array entries in file "%s", but first line\n'\
                    'contains %d elements - no shape is compatible with\n'\
                    'these values' % (len(d), file, ncolumns))
            d.shape = suggested_shape
        if shape is not None:
            if shape != d.shape:
                raise ValueError(
                    'shape=%s is not compatible with shape %s found in "%s"' % \
                    (shape, d.shape, file))
        return d

    elif interval is not None and shape is not None:
        if not isinstance(shape, int):
            raise TypeError('For array values in an interval, '\
                            'shape must be an integer')
        if not isinstance(interval, (list,tuple)):
            raise TypeError('interval must be list or tuple, not %s' % \
                            type(interval))
        if len(interval) != 2:
            raise ValueError('interval must be a 2-tuple (or list)')

        try:
            return linspace(interval[0], interval[1], shape)
        except MemoryError, e:
            # print more information (size of data):
            print e, 'of size %s' % shape

    else:
        # no data, no file, just make zeros

        if not isinstance(shape, (tuple, int, list)):
            raise TypeError('arr: shape (1st arg) must be tuple or int')
        if shape is None:
            raise ValueError(
                'arr: either shape, data, or from_function must be specified')

        try:
            return zeros(shape, dtype=element_type, order=order)
        except MemoryError, e:
            # print more information (size of data):
            print e, 'of size %s' % shape

def _test():
    _test_FloatComparison()
    # test norm functions for multi-dimensional arrays:
    a = array(range(27))
    a.shape = (3,3,3)
    functions = [norm_l2, norm_L2, norm_l1, norm_L1, norm_inf]
    results = [78.7464284904401239, 15.1547572288924073, 351, 13, 26]
    for f, r in zip(functions, results):
        if not float_eq(f(a), r):
            print '%s failed: result=%g, not %g' % (f.__name__, f(a), r)

    # Gram-Schmidt:
    A = array([[1,2,3], [3,4,5], [6,4,1]], float)
    V1 = Gram_Schmidt(A, normalize=True)
    V2 = Gram_Schmidt1(A)
    if not float_eq(V1, V2):
        print 'The two Gram_Schmidt versions did not give equal results'
        print 'Gram_Schmidt:\n', V1
        print 'Gram_Schmidt1:\n', V2

    # Null space:
    K = array([[1,2,3], [1,2,3], [0,0,0], [-1, -2, -3]], float)
    #K = random.random(3*7).reshape(7,3) # does not work...
    print 'K=\n', K
    print 'null(K)=\n', null(K)
    r = K*null(K)
    print 'K*null(K):', r


if __name__ == '__main__':
    from numpy import *
    _test()