1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
;; Copyright (C) 1991, 1993, 1994, 1995 Free Software Foundation, Inc.
;;
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;;
;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this software; see the file COPYING. If not, write to
;; the Free Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111, USA.
;;
;; As a special exception, the Free Software Foundation gives permission
;; for additional uses of the text contained in its release of GUILE.
;;
;; The exception is that, if you link the GUILE library with other files
;; to produce an executable, this does not by itself cause the
;; resulting executable to be covered by the GNU General Public License.
;; Your use of that executable is in no way restricted on account of
;; linking the GUILE library code into it.
;;
;; This exception does not however invalidate any other reasons why
;; the executable file might be covered by the GNU General Public License.
;;
;; This exception applies only to the code released by the
;; Free Software Foundation under the name GUILE. If you copy
;; code from other Free Software Foundation releases into a copy of
;; GUILE, as the General Public License permits, the exception does
;; not apply to the code that you add in this way. To avoid misleading
;; anyone as to the status of such modified files, you must delete
;; this exception notice from them.
;;
;; If you write modifications of your own for GUILE, it is your choice
;; whether to permit this exception to apply to your modifications.
;; If you do not wish that, delete this exception notice.
;;;; "pi.scm", program for computing digits of numerical value of PI.
;;;; "bigpi.scm", program for computing digits of numerical value of PI.
;;;; "e.scm", program for computing digits of numerical value of 'e'.
;;; Authors: Aubrey Jaffer & Jerry D. Hedden
;;; (pi <n> <d>) prints out <n> digits of pi in groups of <d> digits.
;;; 'Spigot' algorithm origionally due to Stanly Rabinowitz.
;;; This algorithm takes time proportional to the square of <n>/<d>.
;;; This fact can make comparisons of computational speed between systems
;;; of vastly differring performances quicker and more accurate.
;;; Try (pi 100 5)
;;; The digit size <d> will have to be reduced for larger <n> or an
;;; overflow error will occur (on systems lacking bignums).
;;; It your Scheme has bignums try (pi 1000).
(define (pi n . args)
(if (null? args) (bigpi n)
(let* ((d (car args))
(r (do ((s 1 (* 10 s))
(i d (- i 1)))
((zero? i) s)))
(n (+ (quotient n d) 1))
(m (quotient (* n d 3322) 1000))
(a (make-vector (+ 1 m) 2)))
(vector-set! a m 4)
(do ((j 1 (+ 1 j))
(q 0 0)
(b 2 (remainder q r)))
((> j n))
(do ((k m (- k 1)))
((zero? k))
(set! q (+ q (* (vector-ref a k) r)))
(let ((t (+ 1 (* 2 k))))
(vector-set! a k (remainder q t))
(set! q (* k (quotient q t)))))
(let ((s (number->string (+ b (quotient q r)))))
(do ((l (string-length s) (+ 1 l)))
((>= l d) (display s))
(display #\0)))
(if (zero? (modulo j 10)) (newline) (display #\ )))
(newline))))
;;; (pi <n>) prints out <n> digits of pi.
;;; 'Spigot' algorithm originally due to Stanly Rabinowitz:
;;;
;;; PI = 2+(1/3)*(2+(2/5)*(2+(3/7)*(2+ ... *(2+(k/(2k+1))*(4)) ... )))
;;;
;;; where 'k' is approximately equal to the desired precision of 'n'
;;; places times 'log2(10)'.
;;;
;;; This version takes advantage of "bignums" in SCM to compute all
;;; of the requested digits in one pass! Basically, it calculates
;;; the truncated portion of (PI * 10^n), and then displays it in a
;;; nice format.
(define (bigpi digits)
(let* ((n (* 10 (quotient (+ digits 9) 10))) ; digits in multiples of 10
(z (inexact->exact (truncate ; z = number of terms
(/ (* n (log 10)) (log 2)))))
(q (do ((x 2 (* 10000000000 x)) ; q = 2 * 10^n
(i (/ n 10) (- i 1)))
((zero? i) x)))
(_pi (number->string ; _pi = PI * 10^n
;; do the calculations in one pass!!!
(let pi_calc ((j z) (k (+ z z 1)) (p (+ q q)))
(if (zero? j)
p
(pi_calc (- j 1) (- k 2) (+ q (quotient (* p j) k))))))))
;; print out the result ("3." followed by 5 groups of 10 digits per line)
(display (substring _pi 0 1)) (display #\.) (newline)
(do ((i 0 (+ i 10)))
((>= i n))
(display (substring _pi (+ i 1) (+ i 11)))
(display (if (zero? (modulo (+ i 10) 50)) #\newline #\ )))
(if (not (zero? (modulo n 50))) (newline))))
;;; (e <n>) prints out <n> digits of 'e'.
;;; Uses the formula:
;;;
;;; 1 1 1 1 1
;;; e = 1 + -- + -- + -- + -- + ... + --
;;; 1! 2! 3! 4! k!
;;;
;;; where 'k' is determined using the desired precision 'n' in:
;;;
;;; n < ((k * (ln(k) - 1)) / ln(10))
;;;
;;; which uses Stirling's formula for approximating ln(k!)
;;;
;;; This program takes advantage of "bignums" in SCM to compute all
;;; the requested digits at once! Basically, it calculates the
;;; fractional part of 'e' (i.e., e-2) as a fraction of two bignums
;;; 'e_n' and 'e_d', determines the integer part of (e_n * 10^n)/e_d,
;;; and then displays it in a nice format.
(define (e digits)
(let* ((n (* 10 (quotient (+ digits 9) 10))) ; digits in multiples of 10
(k (do ((i 15 (+ i 1))) ; k = number of terms
((< n (/ (* i (- (log i) 1)) (log 10))) i)))
(q (do ((x 1 (* 10000000000 x)) ; q = 10^n
(i (/ n 10) (- i 1)))
((zero? i) x)))
(_e (let ((ee
; do calculations
(let e_calc ((i k) (e_d 1) (e_n 0))
(if (= i 1)
(cons (* q e_n) e_d)
(e_calc (- i 1) (* e_d i) (+ e_n e_d))))))
(number->string (+ (quotient (car ee) (cdr ee))
; rounding
(if (< (remainder (car ee) (cdr ee))
(quotient (cdr ee) 2))
0 1))))))
;; print out the result ("2." followed by 5 groups of 10 digits per line)
(display "2.") (newline)
(do ((i 0 (+ i 10)))
((>= i n))
(display (substring _e i (+ i 10)))
(display (if (zero? (modulo (+ i 10) 50)) #\newline #\ )))
(if (not (zero? (modulo n 50))) (newline))))
|