1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
;; Copyright (C) 1992, 1993, 1995, 1997, 2005, 2006 Free Software Foundation, Inc.
;;
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;;
;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this software; see the file COPYING. If not, write to
;; the Free Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111, USA.
;;
;; As a special exception, the Free Software Foundation gives permission
;; for additional uses of the text contained in its release of SCM.
;;
;; The exception is that, if you link the SCM library with other files
;; to produce an executable, this does not by itself cause the
;; resulting executable to be covered by the GNU General Public License.
;; Your use of that executable is in no way restricted on account of
;; linking the SCM library code into it.
;;
;; This exception does not however invalidate any other reasons why
;; the executable file might be covered by the GNU General Public License.
;;
;; This exception applies only to the code released by the
;; Free Software Foundation under the name SCM. If you copy
;; code from other Free Software Foundation releases into a copy of
;; SCM, as the General Public License permits, the exception does
;; not apply to the code that you add in this way. To avoid misleading
;; anyone as to the status of such modified files, you must delete
;; this exception notice from them.
;;
;; If you write modifications of your own for SCM, it is your choice
;; whether to permit this exception to apply to your modifications.
;; If you do not wish that, delete this exception notice.
;;;; "Transcen.scm", Complex trancendental functions for SCM.
;;; Author: Jerry D. Hedden.
;;;; 2005-05 SRFI-70 extensions.
;;; Author: Aubrey Jaffer
(define compile-allnumbers #t) ;for HOBBIT compiler
;;;; Legacy real function names
(cond
((defined? $exp)
(define real-sqrt $sqrt)
(define real-exp $exp)
(define real-expt $expt)
(define real-ln $log)
(define real-log10 $log10)
(define real-sin $sin)
(define real-cos $cos)
(define real-tan $tan)
(define real-asin $asin)
(define real-acos $acos)
(define real-atan $atan)
(define real-sinh $sinh)
(define real-cosh $cosh)
(define real-tanh $tanh)
(define real-asinh $asinh)
(define real-acosh $acosh)
(define real-atanh $atanh))
(else
(define $sqrt real-sqrt)
(define $exp real-exp)
(define $expt real-expt)
(define $log real-ln)
(define $log10 real-log10)
(define $sin real-sin)
(define $cos real-cos)
(define $tan real-tan)
(define $asin real-asin)
(define $acos real-acos)
(define $atan real-atan)
(define $sinh real-sinh)
(define $cosh real-cosh)
(define $tanh real-tanh)
(define $asinh real-asinh)
(define $acosh real-acosh)
(define $atanh real-atanh)))
(define $pi (* 4 (real-atan 1)))
(define pi $pi)
(define (pi* z) (* $pi z))
(define (pi/ z) (/ $pi z))
;;;; Complex functions
(define (exp z)
(if (real? z) (real-exp z)
(make-polar (real-exp (real-part z)) (imag-part z))))
(define (ln z)
(if (and (real? z) (>= z 0))
(real-ln z)
(make-rectangular (real-ln (magnitude z)) (angle z))))
(define log ln)
(define (sqrt z)
(if (real? z)
(if (negative? z) (make-rectangular 0 (real-sqrt (- z)))
(real-sqrt z))
(make-polar (real-sqrt (magnitude z)) (/ (angle z) 2))))
(define (sinh z)
(if (real? z) (real-sinh z)
(let ((x (real-part z)) (y (imag-part z)))
(make-rectangular (* (real-sinh x) (real-cos y))
(* (real-cosh x) (real-sin y))))))
(define (cosh z)
(if (real? z) (real-cosh z)
(let ((x (real-part z)) (y (imag-part z)))
(make-rectangular (* (real-cosh x) (real-cos y))
(* (real-sinh x) (real-sin y))))))
(define (tanh z)
(if (real? z) (real-tanh z)
(let* ((x (* 2 (real-part z)))
(y (* 2 (imag-part z)))
(w (+ (real-cosh x) (real-cos y))))
(make-rectangular (/ (real-sinh x) w) (/ (real-sin y) w)))))
(define (asinh z)
(if (real? z) (real-asinh z)
(log (+ z (sqrt (+ (* z z) 1))))))
(define (acosh z)
(if (and (real? z) (>= z 1))
(real-acosh z)
(log (+ z (sqrt (- (* z z) 1))))))
(define (atanh z)
(if (and (real? z) (> z -1) (< z 1))
(real-atanh z)
(/ (log (/ (+ 1 z) (- 1 z))) 2)))
(define (sin z)
(if (real? z) (real-sin z)
(let ((x (real-part z)) (y (imag-part z)))
(make-rectangular (* (real-sin x) (real-cosh y))
(* (real-cos x) (real-sinh y))))))
(define (cos z)
(if (real? z) (real-cos z)
(let ((x (real-part z)) (y (imag-part z)))
(make-rectangular (* (real-cos x) (real-cosh y))
(- (* (real-sin x) (real-sinh y)))))))
(define (tan z)
(if (real? z) (real-tan z)
(let* ((x (* 2 (real-part z)))
(y (* 2 (imag-part z)))
(w (+ (real-cos x) (real-cosh y))))
(make-rectangular (/ (real-sin x) w) (/ (real-sinh y) w)))))
(define (asin z)
(if (and (real? z) (>= z -1) (<= z 1))
(real-asin z)
(* -i (asinh (* +i z)))))
(define (acos z)
(if (and (real? z) (>= z -1) (<= z 1))
(real-acos z)
(+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
(define (atan z . y)
(if (null? y)
(if (real? z)
(real-atan z)
(/ (log (/ (- +i z) (+ +i z))) +2i))
($atan2 z (car y))))
;;;; SRFI-70
(define (expt z1 z2)
(cond ((and (exact? z2) (not (and (zero? z1) (negative? z2))))
(integer-expt z1 z2))
((zero? z2) (+ 1 (* z1 z2)))
((and (real? z2) (real? z1) (positive? z1))
(real-expt z1 z2))
(else
(exp (* (if (zero? z1) (real-part z2) z2) (log z1))))))
(define (quo x1 x2)
(if (and (exact? x1) (exact? x2))
(quotient x1 x2)
(truncate (/ x1 x2))))
(define (rem x1 x2)
(if (and (exact? x1) (exact? x2))
(remainder x1 x2)
(- x1 (* x2 (quo x1 x2)))))
(define (mod x1 x2)
(if (and (exact? x1) (exact? x2))
(modulo x1 x2)
(- x1 (* x2 (floor (/ x1 x2))))))
(define (exact-round x) (inexact->exact (round x)))
(define (exact-floor x) (inexact->exact (floor x)))
(define (exact-ceiling x) (inexact->exact (ceiling x)))
(define (exact-truncate x) (inexact->exact (truncate x)))
(define (infinite? z) (and (= z (* 2 z)) (not (zero? z))))
(define (finite? z) (not (infinite? z)))
|