1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
#| -*- Scheme -*-
Copyright (c) 1987, 1988, 1989, 1990, 1991, 1995, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014,
2015, 2016, 2017, 2018, 2019, 2020
Massachusetts Institute of Technology
This file is part of MIT scmutils.
MIT scmutils is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.
MIT scmutils is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with MIT scmutils; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
USA.
|#
;;;; Literal function descriptor language.
;;; This file is case sensitive.
;;; The descriptors for literal functions look like prefix versions of
;;; the standard function types. Thus, we want to be able to say:
;;; (literal-function 'V (-> (X Real Real) Real))
;;; The base types are the real numbers, designated by "Real". We
;;; will later extend the system to include complex numbers,
;;; designated by "Complex".
;;; Types can be combined in several ways. The cartesian product of
;;; types is designated by:
;;; (X <type1> <type2> ...)
;;; We use this to specify an argument tuple of objects of the given
;;; types arranged in the given order.
;;; Similarly, we can specify an up tuple or a down tuple with:
;;; (UP <type1> <type2> ...)
;;; (DOWN <type1> <type2> ...)
;;; We can also specify a uniform tuple of a number of elements of the
;;; same type using:
;;; (UP* <type> [n])
;;; (DOWN* <type> [n])
#|
;;; So, for example:
(define H
(literal-function 'H
(-> (UP Real (UP* Real 2) (DOWN* Real 2)) Real)))
(show-expression
(((Hamilton-equations H)
(coordinate-tuple (literal-function 'x)
(literal-function 'y))
(momentum-tuple (literal-function 'p_x)
(literal-function 'p_y)))
't))
(up
0
(up
(+ ((D x) t)
(* -1
(((partial 2 0) H) (up t (up (x t) (y t)) (down (p_x t) (p_y t))))))
(+ ((D y) t)
(* -1
(((partial 2 1) H) (up t (up (x t) (y t)) (down (p_x t) (p_y t)))))))
(down
(+ ((D p_x) t)
(((partial 1 0) H) (up t (up (x t) (y t)) (down (p_x t) (p_y t)))))
(+ ((D p_y) t)
(((partial 1 1) H) (up t (up (x t) (y t)) (down (p_x t) (p_y t)))))))
|#
;;; To get started... Type expressions are self-evaluating
(define Real 'Real)
(define Complex 'Complex)
(define (X . types)
(cond ((null? types) (error "Null type argument -- X"))
((null? (cdr types)) (car types))
(else (cons 'X types))))
(define (UP . types)
(cond ((null? types) (error "Null type argument -- UP"))
((null? (cdr types)) (car types))
(else (cons 'UP types))))
(define (DOWN . types)
(cond ((null? types) (error "Null type argument -- DOWN"))
((null? (cdr types)) (car types))
(else (cons 'DOWN types))))
(define (^ type n) ;n = dimension
(apply X (make-list n type)))
(define (starify rest starred unstarred-proc)
(cond ((null? rest) (error "Null type argument" starred))
(else
(let lp ((args rest) (curtype #f) (explicit #f) (types '()))
(cond ((null? args)
(if explicit (apply unstarred-proc types) (cons starred types)))
((exact-positive-integer? (car args))
(if curtype
(lp (cdr args)
#f
#t
(append types (make-list (fix:- (car args) 1) curtype)))
(error "Bad type arguments" starred rest)))
(else
(lp (cdr args)
(car args)
#f
(append types (list (car args))))))))))
(define (X* . rest)
(starify rest 'X* X))
(define (UP* . rest)
(starify rest 'UP* UP))
(define (DOWN* . rest)
(starify rest 'DOWN* DOWN))
(define (-> domain range)
`(-> ,domain ,range))
(define Any 'Any)
(define (default-function-type n #!optional type)
(if (= n 1)
'(-> Real Real)
(-> (X* Real n) Real)))
(define (permissive-function-type n)
(-> (X* Any n) Real))
;;; Some useful types
(define (Lagrangian #!optional n) ;n = #degrees-of-freedom
(if (default-object? n)
(-> (UP* Real (UP* Real) (UP* Real)) Real)
(-> (UP Real (UP* Real n) (UP* Real n)) Real)))
(define (Hamiltonian #!optional n) ;n = #degrees-of-freedom
(if (default-object? n)
(-> (UP Real (UP* Real) (DOWN* Real)) Real)
(-> (UP Real (UP* Real n) (DOWN* Real n)) Real)))
#| ;;; For example
(define L (literal-function 'L (Lagrangian)))
(pe (L (->L-state 't 'x 'v)))
(L (up t x v))
(pe ((D L) (->L-state 't 'x 'v)))
(down (((partial 0) L) (up t x v))
(((partial 1) L) (up t x v))
(((partial 2) L) (up t x v)))
(pe (L (->L-state 't (up 'x 'y) (up 'v_x 'v_y))))
(L (up t (up x y) (up v_x v_y)))
(pe ((D L) (->L-state 't (up 'x 'y) (up 'v_x 'v_y))))
(down
(((partial 0) L) (up t (up x y) (up v_x v_y)))
(down (((partial 1 0) L) (up t (up x y) (up v_x v_y)))
(((partial 1 1) L) (up t (up x y) (up v_x v_y))))
(down (((partial 2 0) L) (up t (up x y) (up v_x v_y)))
(((partial 2 1) L) (up t (up x y) (up v_x v_y)))))
(define H (literal-function 'H (Hamiltonian)))
(pe (H (->H-state 't 'x 'p)))
(H (up t x p))
(pe ((D H) (->H-state 't 'x 'p)))
(down (((partial 0) H) (up t x p))
(((partial 1) H) (up t x p))
(((partial 2) H) (up t x p)))
(pe (H (->H-state 't (up 'x 'y) (down 'p_x 'p_y))))
(H (up t (up x y) (down p_x p_y)))
(pe ((D H) (->H-state 't (up 'x 'y) (down 'p_x 'p_y))))
(down
(((partial 0) H) (up t (up x y) (down p_x p_y)))
(down (((partial 1 0) H) (up t (up x y) (down p_x p_y)))
(((partial 1 1) H) (up t (up x y) (down p_x p_y))))
(up (((partial 2 0) H) (up t (up x y) (down p_x p_y)))
(((partial 2 1) H) (up t (up x y) (down p_x p_y)))))
|#
;;;---------------------------------------------------------------------
(define (type->domain type)
(assert (eq? (car type) '->))
(cadr type))
(define (type->range-type type)
(assert (eq? (car type) '->))
(caddr type))
(define (type->domain-types type)
(assert (eq? (car type) '->))
(let ((domain (type->domain type)))
(cond ((and (pair? domain) (eq? (car domain) 'X))
(cdr domain))
(else
(list domain)))))
(define (type->arity type)
(assert (eq? (car type) '->))
(let ((domain (type->domain type)))
(cond ((and (pair? domain) (eq? (car domain) 'X))
(length->exact-arity (length (cdr domain))))
((and (pair? domain) (eq? (car domain) 'X*))
*at-least-zero*)
(else
(length->exact-arity 1)))))
(define (length->exact-arity n)
(assert (exact-integer? n))
(cons n n))
(define (type-expression->predicate type-expression)
(cond ((pair? type-expression)
(case (car type-expression)
((X)
(let ((type-predicates
(map type-expression->predicate
(cdr type-expression))))
(lambda (datum)
(and (vector? datum)
(all-satisfied type-predicates datum)))))
((UP)
(let ((type-predicates
(map type-expression->predicate
(cdr type-expression))))
(lambda (datum)
(and (up? datum)
(all-satisfied type-predicates datum)))))
((DOWN)
(let ((type-predicates
(map type-expression->predicate
(cdr type-expression))))
(lambda (datum)
(and (down? datum)
(all-satisfied type-predicates datum)))))
((X*)
(let ((type-predicates
(map type-expression->predicate
(cdr type-expression))))
(lambda (datum)
(cond ((vector? datum)
(let ((n (vector-length datum)))
(let lp ((i 0) (preds type-predicates))
(cond ((fix:= i n) #t)
(((car preds) (vector-ref datum i))
(lp (fix:+ i 1)
(if (null? (cdr preds))
preds
(cdr preds))))
(else #f)))))
((null? (cdr type-predicates))
((car type-predicates) datum))
(else #f)))))
((UP* DOWN*)
(let ((type-predicates
(map type-expression->predicate
(cdr type-expression)))
(test?
(if (eq? (car type-expression) 'UP*) up? down?)))
(lambda (datum)
(cond ((test? datum)
(let ((n (s:length datum)))
(let lp ((i 0) (preds type-predicates))
(cond ((fix:= i n) #t)
(((car preds) (s:ref datum i))
(lp (fix:+ i 1)
(if (null? (cdr preds))
preds
(cdr preds))))
(else #f)))))
((and (not (structure? datum))
(null? (cdr type-predicates)))
((car type-predicates) datum))
(else #f)))))
((->) function?)
(else (error "Unknown type combinator" type-expression))))
((eq? type-expression Real) numerical-quantity?)
((eq? type-expression Complex) numerical-quantity?)
((eq? type-expression Any) any?)
(else (error "Unknown primitive type" type-expression))))
(define (all-satisfied type-preds structure)
(let ((n (length type-preds)))
(and (fix:= n (s:length structure))
(let lp ((types type-preds) (i 0))
(cond ((fix:= i n) #t)
(((car types) (s:ref structure i))
(lp (cdr types) (fix:+ i 1)))
(else #f))))))
(define (type-expression->type-tag type-expression)
(let ((type
(cond ((pair? type-expression)
(case (car type-expression)
((X) *vector*)
((UP) *up*)
((DOWN) *down*)
((X*) *vector*)
((UP*) *up*)
((DOWN*) *down*)
((->) *function*)
(else
(error "Unknown type combinator" type-expression))))
((eq? type-expression Real) *number*)
((eq? type-expression Complex) *number*)
(else
(error "Unknown primitive type" type-expression)))))
(abstract-type-tag type)))
;;; For computing the type of the range of the derivative of a
;;; function with a given type.
;;; This is not really used. Observed by Sam Ritchie: 15 August 2021
;; (define (df-range-type f-domain-types f-range-type arg)
;; ;; There is some idea here that I should do something like
;; ;; (type-complement (type-expression arg) f-range-type)
;; ;; but the argument currently escapes me as to why I need this.
;; f-range-type)
;;; Functions with types are defined as apply hooks...
(define (f:domain-types f)
(if (typed-or-abstract-function? f)
(cadr (apply-hook-extra f))
#f))
(define (f:range-type f)
(if (typed-or-abstract-function? f)
(caddr (apply-hook-extra f))
#f))
(define *literal-reconstruction* #f)
(define (f:expression f)
(if (typed-or-abstract-function? f)
(if *literal-reconstruction*
(cadddr (cdr (apply-hook-extra f)))
(cadddr (apply-hook-extra f)))
#f))
(define (typed-function function range-type domain-types)
(let ((arity (g:arity function)))
(assert (exactly-n? arity)
"I cannot handle this arity -- TYPED-FUNCTION")
(assert (fix:= (length domain-types) (car arity))
"Inconsistent arity -- TYPED-FUNCTION")
(let ((apply-hook (make-apply-hook #f #f)))
(set-apply-hook-procedure! apply-hook function)
(set-apply-hook-extra! apply-hook
(list '*function* domain-types range-type #f))
apply-hook)))
(define (literal-function? f)
(and (apply-hook? f)
(eq? (car (apply-hook-extra f)) '*function*)))
(define (literal-function fexp #!optional descriptor)
(if (default-object? descriptor)
(set! descriptor (default-function-type 1)))
(let ((arity (type->arity descriptor))
(range-type (type->range-type descriptor)))
(cond ((or (eq? Real range-type)
(eq? Complex range-type)
(eq? '*function* (type-expression->type-tag range-type)))
(litfun fexp arity range-type (type->domain-types descriptor)
`(literal-function ',fexp ,descriptor)))
((not (symbol? fexp))
(error "Cannot handle this function expression: LITERAL-FUNCTION"
fexp
descriptor))
((eq? (car range-type) 'UP)
(let ((n (length (cdr range-type))))
(s:generate n 'up
(lambda (i)
(literal-function (symbol fexp '^ i)
(-> (type->domain descriptor)
(list-ref (cdr range-type) i)))))))
((eq? (car range-type) 'DOWN)
(let ((n (length (cdr range-type))))
(s:generate n 'down
(lambda (i)
(literal-function (symbol fexp '_ i)
(-> (type->domain descriptor)
(list-ref (cdr range-type) i)))))))
(else
(error "Cannot handle this range type: LITERAL-FUNCTION"
fexp
descriptor)))))
(define (litfun fexp arity range-type domain-types call)
;;(assert (exactly-n? arity)
;; "I cannot handle this arity -- LITERAL-FUNCTION")
(let ((apply-hook (make-apply-hook #f #f)))
(let ((litf
(cond ((equal? arity *exactly-zero*)
(lambda () (literal-apply apply-hook '())))
((equal? arity *exactly-one*)
(lambda (x) (literal-apply apply-hook (list x))))
((equal? arity *exactly-two*)
(lambda (x y) (literal-apply apply-hook (list x y))))
((equal? arity *exactly-three*)
(lambda (x y z) (literal-apply apply-hook (list x y z))))
(else
(lambda args (literal-apply apply-hook args))))))
(set-apply-hook-procedure! apply-hook litf)
(set-apply-hook-extra! apply-hook
(list '*function* domain-types range-type fexp call))
apply-hook)))
(define (literal-apply apply-hook args)
(if (rexists differential? args)
(litderiv apply-hook args)
(let ((fexp (f:expression apply-hook))
(dtypes (f:domain-types apply-hook))
(rtype (f:range-type apply-hook)))
(let ((dpreds (map type-expression->predicate dtypes))
(range-tag (type-expression->type-tag rtype)))
(assert (&and (map (lambda (p x) (p x)) dpreds args))
"Wrong type argument -- LITERAL-FUNCTION"
(cons fexp args))
(if (eq? range-tag '*function*)
(let ((ans (literal-function `(,fexp ,@args) rtype)))
;; properties?
ans)
(let ((ans (make-combination range-tag fexp args)))
(add-property! ans 'literal-function apply-hook)
(add-property! ans 'type-expression rtype)
ans))))))
;;; Sam Ritchie's improvement: 15 August 2021
(define (litderiv apply-hook args)
(let* ((v (list->up-structure args))
(maxtag (apply max-order-tag (s:fringe v)))
(ev (up-structure->list
(s:map/r (lambda (x) (without-tag x maxtag)) v)))
(partials (s:fringe
(s:map-chain
(lambda (x path)
(let ((dx (with-tag x maxtag)))
;; This is the same test applied inside
;; diff.scm.
(if (and (number? dx) (zero? dx))
0
(let ((partialx
(literal-partial apply-hook path)))
;; we can use LITERAL-APPLY because we
;; know the type of PARTIALX, so no
;; need to use generics.
(d:* (literal-apply partialx ev) dx)))))
v))))
(d:+ (apply apply-hook ev)
(a-reduce d:+ partials))))
(define (literal-partial apply-hook path)
(let ((fexp
(if (equal? (g:arity apply-hook) *exactly-one*) ;univariate
(if (fix:= (car path) 0)
(if (fix:= (length path) 1)
;; Special-case the single argument case, or a
;; unary function that's provided with a
;; structure of a single entry.
(symb:derivative (f:expression apply-hook))
`((partial ,@(cdr path))
,(f:expression apply-hook)))
(error "Wrong indices -- LITERAL-PARTIAL" path))
;; If the function takes multiple arguments we DO need to
;; index into that first layer. (else the first layer is
;; added.)
`((partial ,@path)
,(f:expression apply-hook))))
(range
(f:range-type apply-hook))
(domain
(f:domain-types apply-hook)))
(litfun fexp
(g:arity apply-hook)
range
domain
`(literal-function ',fexp
(-> ,(apply X domain) ,range)))))
;;; Previous version, before Sam Ritchie's improvement.
;;
;; (define (litderiv apply-hook args)
;; (let ((v (list->up-structure args)))
;; (let ((maxtag (apply max-order-tag (s:fringe v))))
;; (let ((ev
;; (up-structure->list
;; (s:map/r (lambda (x) (without-tag x maxtag)) v)))
;; (dv
;; (s:map/r (lambda (x) (with-tag x maxtag)) v)))
;; (d:+ (apply apply-hook ev)
;; (a-reduce d:+
;; (map (lambda (partialx dx)
;; (d:* (apply partialx ev) dx))
;; (s:fringe (make-partials apply-hook v))
;; (s:fringe dv))))))))
;; (define (make-partials apply-hook v)
;; (define (fd indices vv)
;; (cond ((structure? vv)
;; (s:generate (s:length vv) (s:same vv)
;; (lambda (i)
;; (fd (cons i indices)
;; (s:ref vv i)))))
;; ((or (numerical-quantity? vv)
;; (abstract-quantity? vv))
;; (let ((fexp
;; (let ((is (reverse indices)))
;; (if (equal? (g:arity apply-hook) *exactly-one*) ;univariate
;; (if (fix:= (car is) 0)
;; (if (fix:= (length indices) 1)
;; (symb:derivative (f:expression apply-hook))
;; `((partial ,@(cdr is))
;; ,(f:expression apply-hook)))
;; (error "Wrong indices -- MAKE-PARTIALS"
;; indices vv))
;; `((partial ,@is)
;; ,(f:expression apply-hook)))))
;; (range
;; (df-range-type (f:domain-types apply-hook)
;; (f:range-type apply-hook)
;; vv))
;; (domain
;; (f:domain-types apply-hook)))
;; (litfun fexp
;; (g:arity apply-hook)
;; range
;; domain
;; `(literal-function ',fexp
;; (-> ,(apply X domain) ,range)))))
;; (else
;; (error "Bad structure -- MAKE-PARTIALS"
;; indices vv))))
;; (fd '() v))
#|
;;; Not used anywhere.
(define (accumulate-tags v)
(cond ((structure? v)
(let ((n (s:length v)))
(let lp ((i 0) (ut '()))
(if (fix:= i n)
ut
(lp (fix:+ i 1)
(union-differential-tags
ut
(accumulate-tags (s:ref v i))))))))
((numerical-quantity? v)
(differential-tags
(car (last-pair (differential->terms v)))))
(else
(error "Bad structure -- ACCUMULATE-TAGS" v))))
|#
|