1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
|
#| -*- Scheme -*-
Copyright (c) 1987, 1988, 1989, 1990, 1991, 1995, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014,
2015, 2016, 2017, 2018, 2019, 2020
Massachusetts Institute of Technology
This file is part of MIT scmutils.
MIT scmutils is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.
MIT scmutils is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with MIT scmutils; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
USA.
|#
;;;; Matrices
(declare (usual-integrations))
(define (m:type m) matrix-type-tag)
(define (m:type-predicate m) matrix-quantity?)
;;; The matrix type is a structural type, providing a means of
;;; combining other objects. In this system an explicit matrix is a
;;; tagged array. An array is represented as a scheme vector of rows,
;;; where each row is a scheme vector of elements.
#|
(*matrix* (nrows . ncols)
#( #( a11 a12 ...)
#( a21 a22 ...)
...))
|#
(define (tag-matrix nrows ncols array)
(list matrix-type-tag (cons nrows ncols) array))
(define (m:num-rows matrix)
(caadr matrix))
(define (m:num-cols matrix)
(cdadr matrix))
(define (matrix->array matrix)
(caddr matrix))
(define (array->matrix array)
(assert (and (vector? array) (vector-forall vector? array))
"Not an array -- ARRAY->MATRIX" array)
(let ((nrows (num-rows array)) (ncols (num-cols array)))
(assert
(vector-forall (lambda (row) (fix:= (vector-length row) ncols))
array)
"Not all rows have same length -- ARRAY->MATRIX" array)
(tag-matrix nrows ncols array)))
(define (m:dimension mat)
(assert (matrix? mat) "Not a matrix -- DIMENSION" mat)
(let ((d (m:num-rows mat)))
(assert (fix:= d (m:num-cols mat))
"Not a square matrix -- DIMENSION" mat)
d))
(define (matrix-size mat)
(assert (matrix? mat) "Not a matrix -- SIZE" mat)
(fix:* (m:num-rows mat) (m:num-cols mat)))
;;; Single columns or rows are often important.
(define (column-matrix? m)
(and (matrix? m)
(fix:= (m:num-cols m) 1)))
(define (row-matrix? m)
(and (matrix? m)
(fix:= (m:num-rows m) 1)))
;;; Sometimes Scheme vectors need to be coerced to matrices
(define (vector->row-matrix v)
(assert (vector? v))
(tag-matrix 1 (vector-length v) (vector v)))
(define (vector->column-matrix v)
(assert (vector? v))
(define (vector->column-array v)
(make-initialized-vector (vector-length v)
(lambda (i)
(vector (vector-ref v i)))))
(tag-matrix (vector-length v) 1 (vector->column-array v)))
(define (row-matrix . args)
(vector->row-matrix (apply vector args)))
(define (column-matrix . args)
(vector->column-matrix (apply vector args)))
;;; We may need to extract a scheme vector from a matrix
(define (column-matrix->vector m)
(assert (column-matrix? m))
(nth-col (matrix->array m) 0))
(define (row-matrix->vector m)
(assert (row-matrix? m))
(nth-row (matrix->array m) 0))
(define (m:nth-row m n)
(nth-row (matrix->array m) n))
(define (m:nth-col m n)
(nth-col (matrix->array m) n))
(define (m:diagonal m)
(let ((rows (m:dimension m)))
(make-initialized-vector rows
(lambda (i) (matrix-ref m i i)))))
(define (literal-matrix name nrows ncols)
(m:generate nrows ncols
(lambda (i j)
(string->symbol
(string-append (symbol->string name)
"^"
(number->string i)
"_"
(number->string j))))))
#|
(literal-matrix 'A 2 3)
#|
(matrix-by-rows (list A^0_0 A^0_1 A^0_2)
(list A^1_0 A^1_1 A^1_2))
|#
|#
(define (literal-column-matrix name nrows)
(m:generate nrows 1
(lambda (i j)
(string->symbol
(string-append (symbol->string name)
"^"
(number->string i))))))
(define (literal-row-matrix name ncols)
(m:generate 1 ncols
(lambda (i j)
(string->symbol
(string-append (symbol->string name)
"_"
(number->string j))))))
;;; We need to be able to enter matrices easily, in a variety of
;;; ways.
(define (up->column-matrix v)
(assert (up? v))
(vector->column-matrix (up->vector v)))
(define (column-matrix->up m)
(assert (column-matrix? m))
(vector->up (nth-col (matrix->array m) 0)))
(define (down->row-matrix v)
(assert (down? v))
(vector->row-matrix (down->vector v)))
(define (row-matrix->down m)
(assert (row-matrix? m))
(vector->down (nth-row (matrix->array m) 0)))
(define (matrix-by-rows . rows)
(matrix-by-row-list rows))
(define (matrix-by-row-list rows)
(assert (and (not (null? rows)) (list? (car rows))))
(let ((nrows (length rows)))
(let ((ncols (length (car rows))))
(assert (for-all? (cdr rows)
(lambda (row)
(and (list? row) (fix:= ncols (length row))))))
(m:generate nrows ncols
(lambda (i j)
(list-ref (list-ref rows i) j))))))
(define (matrix-by-cols . cols)
(matrix-by-col-list cols))
(define (matrix-by-col-list cols)
(assert (and (not (null? cols)) (list (car cols))))
(let ((ncols (length cols)))
(let ((nrows (length (car cols))))
(assert (for-all? (cdr cols)
(lambda (col)
(and (list? col) (fix:= nrows (length col))))))
(m:generate nrows ncols
(lambda (i j)
(list-ref (list-ref cols j) i))))))
;;; Sometimes we need to make a modified matrix
(define (matrix-with-substituted-row A i V)
(tag-matrix (m:num-rows A) (m:num-cols A)
(vector-with-substituted-coord (matrix->array A) i V)))
(define (matrix-ref m i j)
(vector-ref (vector-ref (matrix->array m) i) j))
(define m:ref matrix-ref)
(define (m:generate nrows ncols proc)
(tag-matrix nrows ncols (generate-array nrows ncols proc)))
(define matrix:generate m:generate)
(define (m:transpose m)
(m:generate (m:num-cols m) (m:num-rows m)
(lambda (i j) (matrix-ref m j i))))
(define ((m:elementwise f) . matrices)
(assert (and (not (null? matrices))
(for-all? matrices matrix?)))
(let ((nrows (m:num-rows (car matrices)))
(ncols (m:num-cols (car matrices))))
(assert (for-all? (cdr matrices)
(lambda (m)
(and (fix:= (m:num-rows m) nrows)
(fix:= (m:num-cols m) ncols)))))
(m:generate nrows ncols
(lambda (i j)
(g:apply f
(map (lambda (m)
(matrix-ref m i j))
matrices))))))
(define matrix:elementwise m:elementwise)
;;; Submatrices are often used -- here we extract one
(define (m:submatrix A lowrow hirow+1 lowcol hicol+1)
(m:generate (fix:- hirow+1 lowrow) (fix:- hicol+1 lowcol)
(lambda (i j)
(matrix-ref A (fix:+ i lowrow) (fix:+ j lowcol)))))
;;; A minor is a submatrix obtained from a given matrix
;;; by dropping a given row and column.
(define (m:minor m i j)
(m:generate (fix:- (m:num-rows m) 1)
(fix:- (m:num-cols m) 1)
(lambda (a b)
(matrix-ref m
(if (fix:< a i)
a
(fix:+ a 1))
(if (fix:< b j)
b
(fix:+ b 1))))))
(define (m:zero? matrix)
(assert (matrix? matrix) "Not a matrix -- ZERO?" matrix)
(let ((m (m:num-rows matrix))
(n (m:num-cols matrix))
(mat (matrix->array matrix)))
(let rowlp ((i 0))
(if (fix:= i m)
#t
(let collp ((j 0))
(if (fix:= j n)
(rowlp (fix:+ i 1))
(if (g:zero? (array-ref mat i j))
(collp (fix:+ j 1))
#f)))))))
(define (m:make-zero n #!optional m)
(let ((m (if (default-object? m) n m)))
(m:generate n m (lambda (i j) :zero))))
(define (m:zero-like m)
(let ((z (g:zero-like (matrix-ref m 0 0))))
(m:generate (m:num-rows m) (m:num-cols m)
(lambda (i j) z))))
(define (m:make-identity n)
(m:generate n n
(lambda (i j)
(if (fix:= i j) :one :zero))))
(define (m:identity? matrix)
(assert (matrix? matrix)
"Not a matrix -- IDENTITY?" matrix)
(let ((dim (m:num-rows matrix))
(mat (matrix->array matrix)))
(and (fix:= dim (m:num-cols matrix))
(let rowlp ((i 0))
(if (fix:= i dim)
#t
(let collp ((j 0))
(if (fix:= j dim)
(rowlp (fix:+ i 1))
(if (fix:= i j)
(if (g:one? (array-ref mat i j))
(collp (fix:+ j 1))
#f)
(if (g:zero? (array-ref mat i j))
(collp (fix:+ j 1))
#f)))))))))
(define (m:one-like m)
(m:make-identity (m:dimension m)))
(define (m:identity-like m)
(m:make-identity (m:dimension m)))
(define (m:make-diagonal diag)
;; From a scheme vector DIAG.
(let ((n (vector-length diag)))
(m:generate n n
(lambda (i j)
(if (fix:= i j)
(vector-ref diag i)
:zero)))))
(define (diagonal? matrix)
(assert (matrix? matrix) "Not a matrix -- DIAGONAL?" matrix)
(let ((dim (m:num-rows matrix))
(mat (matrix->array matrix)))
(and (fix:= dim (m:num-cols matrix))
(let rowlp ((i 0))
(if (fix:= i dim)
#t
(let collp ((j 0))
(if (fix:= j dim)
(rowlp (fix:+ i 1))
(if (fix:= i j)
(collp (fix:+ j 1))
(if (g:zero? (array-ref mat i j))
(collp (fix:+ j 1))
#f)))))))))
(define (matrix=matrix m1 m2)
(assert (and (matrix? m1) (matrix? m2)))
(and (fix:= (m:num-rows m1) (m:num-rows m2))
(fix:= (m:num-cols m1) (m:num-cols m2))
(vector-forall
(lambda (row1 row2)
(vector-forall g:= row1 row2))
(matrix->array m1) (matrix->array m2))))
(define (matrix-binary-componentwise binop matrix1 matrix2)
(assert (and (matrix? matrix1) (matrix? matrix2))
"Not a matrix -- addition" (list binop matrix1 matrix2))
(let ((nrows (m:num-rows matrix1))
(ncols (m:num-cols matrix1))
(m1 (matrix->array matrix1))
(m2 (matrix->array matrix2)))
(assert (and (fix:= nrows (m:num-rows matrix2))
(fix:= ncols (m:num-cols matrix2)))
"Matrices of unequal size -- addition"
(list binop matrix1 matrix2))
(tag-matrix nrows ncols
(make-initialized-vector nrows
(lambda (i)
(let ((m1row (vector-ref m1 i))
(m2row (vector-ref m2 i)))
(make-initialized-vector ncols
(lambda (j)
(binop (vector-ref m1row j)
(vector-ref m2row j))))))))))
(define (matrix+matrix matrix1 matrix2)
(matrix-binary-componentwise g:+ matrix1 matrix2))
(define (matrix-matrix matrix1 matrix2)
(matrix-binary-componentwise g:- matrix1 matrix2))
(define (matrix*matrix matrix1 matrix2)
(assert (and (matrix? matrix1) (matrix? matrix2))
"Not a matrix -- *" (list matrix1 matrix2))
(let ((m1r (m:num-rows matrix1))
(m1c (m:num-cols matrix1))
(m2r (m:num-rows matrix2))
(m2c (m:num-cols matrix2))
(m1 (matrix->array matrix1))
(m2 (matrix->array matrix2)))
(assert (fix:= m1c m2r)
"Matrix sizes do not match -- MATRIX*MATRIX"
(list m1 m2))
(let ((m1cm1 (fix:- m1c 1)))
(m:generate m1r m2c
(lambda (i j)
(let ((r1i (vector-ref m1 i)))
(g:sigma (lambda (k)
(g:* (vector-ref r1i k)
(array-ref m2 k j)))
0
m1cm1)))))))
(define (m:square a)
(matrix*matrix a a))
(define (m:expt M n)
(assert (matrix? M) "Not a matrix -- EXPT")
(cond ((or (not (integer? n)) (inexact? n))
(error "Only integer powers allowed -- M:EXPT"))
((fix:< n 0)
(m:expt (m:invert M) (fix:- 0 n)))
((fix:zero? n)
(m:make-identity (m:num-rows M)))
(else
(let loop ((count n))
(cond ((fix:= count 1) M)
((even? count)
(let ((a (loop (fix:quotient count 2))))
(matrix*matrix a a)))
(else
(matrix*matrix M
(loop (fix:- count 1)))))))))
(define (matrix*scalar matrix k)
(assert (and (matrix? matrix) (scalar? k))
"Not matrix*scalar" (list matrix k))
(let ((m (matrix->array matrix)))
(m:generate (m:num-rows matrix) (m:num-cols matrix)
(lambda (i j) (g:* (array-ref m i j) k)))))
(define (scalar*matrix k matrix)
(assert (and (matrix? matrix) (scalar? k))
"Not matrix*scalar" (list matrix k))
(let ((m (matrix->array matrix)))
(m:generate (m:num-rows matrix) (m:num-cols matrix)
(lambda (i j) (g:* k (array-ref m i j))))))
(define (m:scale k)
(lambda (m) (scalar*matrix k m)))
(define (m:outer-product v1 v2)
(assert (and (column-matrix? v1) (row-matrix? v2)))
(matrix*matrix v1 v2))
(define (m:inner-product v1 v2)
(assert (and (row-matrix? v1) (column-matrix? v2)))
(matrix-ref (matrix*matrix v1 v2) 0 0))
(define (matrix/matrix m1 m2)
(matrix*matrix m1 (m:invert m2)))
;;; Cleaning up some useful hacks
(define (matrix*up m v)
(column-matrix->up
(matrix*matrix m
(up->column-matrix v))))
(define (down*matrix v m)
(row-matrix->down
(matrix*matrix (down->row-matrix v)
m)))
#| ;;; Unnecessary, since up tuples are vectors
(define (matrix*vector m v)
(column-matrix->vector
(matrix*matrix m
(vector->column-matrix v))))
|#
(define (matrix*vector m v) (matrix*up m v))
;;; Dangerous, should not be generic.
(define (vector*matrix v m)
(row-matrix->vector
(matrix*matrix (vector->row-matrix v)
m)))
(define (matrix/scalar m k)
(matrix*scalar m (g:invert k)))
(define (scalar/matrix k m)
(scalar*matrix k (m:invert m)))
(define (matrix=scalar m c)
(matrix=matrix m
(scalar*matrix c
(m:make-identity (m:num-rows m)))))
(define (scalar=matrix c m)
(matrix=matrix (scalar*matrix c
(m:make-identity (m:num-rows m)))
m))
(define (matrix+scalar m c)
(matrix+matrix m
(scalar*matrix c
(m:make-identity (m:num-rows m)))))
(define (scalar+matrix c m)
(matrix+matrix (scalar*matrix c
(m:make-identity (m:num-rows m)))
m))
(define (matrix-scalar m c)
(matrix-matrix m
(scalar*matrix c
(m:make-identity (m:num-rows m)))))
(define (scalar-matrix c m)
(matrix-matrix (scalar*matrix c
(m:make-identity (m:num-rows m)))
m))
(define (m:trace matrix)
(assert (matrix? matrix) "Not a matrix -- TRACE")
(let ((rows (m:num-rows matrix))
(m (matrix->array matrix)))
(assert (fix:= rows (m:num-cols matrix))
"Not a square matrix -- TRACE" matrix)
(g:sigma (lambda (j) (array-ref m j j))
0
(fix:- rows 1))))
(define (m:conjugate mat)
((m:elementwise g:conjugate) mat))
(define (m:negate mat)
((m:elementwise g:negate) mat))
(define (m:dot-product-row r1 r2)
(v:dot-product (row-matrix->vector r1)
(row-matrix->vector r2)))
(define (m:dot-product-column c1 c2)
(v:dot-product (column-matrix->vector c1)
(column-matrix->vector c2)))
(define (m:cross-product-row r1 r2)
(vector->row-matrix
(v:cross-product (row-matrix->vector r1)
(row-matrix->vector r2))))
(define (m:cross-product-column c1 c2)
(vector->column-matrix
(v:cross-product (column-matrix->vector c1)
(column-matrix->vector c2))))
(define (m:exp mat)
(series:value exp-series (list mat)))
(define (m:sin mat)
(series:value sin-series (list mat)))
(define (m:cos mat)
(series:value cos-series (list mat)))
;;; Kleanthes Konaris determinant routine, slightly edited by GJS
;;; -------------------------------------------------------------
;;; (iota 4) --> (0 1 2 3), as in APL.
(define (general-determinant add sub mul easy-zero?)
(let ((zero (add)))
(define (det m)
(let ((cache '()))
(define (c-det row active-column-list)
(if (null? (cdr active-column-list)) ;one active column
(matrix-ref m row (car active-column-list))
(let ((value
(assoc (list row active-column-list) cache)))
(if value
(cadr value) ; cache hit!
(let loop ; cache miss!
((index 0)
(remaining-columns active-column-list)
(answer zero))
(if (null? remaining-columns)
(begin (set! cache
(cons (list (list row
active-column-list)
answer)
cache))
answer)
(let ((term
(matrix-ref m row (car remaining-columns))))
(if (easy-zero? term)
(loop (fix:+ index 1)
(cdr remaining-columns)
answer)
(let ((contrib
(mul term
(c-det (fix:+ row 1)
(delete-nth index
active-column-list)))))
(if (even? index)
(loop (fix:+ index 1)
(cdr remaining-columns)
(add answer contrib))
(loop (fix:+ index 1)
(cdr remaining-columns)
(sub answer contrib))))))))))))
(c-det 0 (iota (m:dimension m)))))
det))
;;;; Linear equations solved by Cramer's rule.
;;; Solves an inhomogeneous system of linear equations, A*X=B,
;;; where the matrix A and the column matrix B are given.
;;; It returns the column matrix X.
;;; Unlike LU decomposition, Cramer's rule generalizes to symbolic solutions.
(define (Cramers-rule add sub mul div zero?)
(let ((det (general-determinant add sub mul zero?)))
(define solve
(lambda (A B)
(assert (and (matrix? A)
(column-matrix? B)
(fix:= (m:dimension A) (m:num-rows B))))
(let ((bv (m:nth-col B 0))
(d (det A))
(At (m:transpose A)))
(vector->column-matrix
(make-initialized-vector (vector-length bv)
(lambda (i)
(div (det (matrix-with-substituted-row At i bv))
d)))))))
solve))
;;; The following implements the classical adjoint formula for the
;;; inverse of a matrix. This may be useful for symbolic applications.
(define (classical-adjoint-formula zero one add sub mul div zero?)
(let ((det (general-determinant add sub mul zero?)))
(define (matinv A)
(let ((dim (m:dimension A)))
(if (fix:= dim 1)
(m:generate 1 1
(lambda (i j) (div one (matrix-ref A 0 0))))
(let* ((d (det A)) (-d (sub zero d)))
(m:generate dim dim
(lambda (j i)
(if (even? (+ i j))
(div (det (m:minor A i j)) d)
(div (det (m:minor A i j)) -d))))))))
matinv))
(define (easy-zero? x)
(cond ((number? x) (zero? x))
;; Perhaps some form of easy simplification here?
;; e.g. substitution of numbers for literals,
;; and testing for zero result.
(else #f)))
(define matinv-general
(classical-adjoint-formula :zero :one g:+ g:- g:* g:/ easy-zero?))
(define solve-general
(Cramers-rule g:+ g:- g:* g:/ easy-zero?))
(define determinant-general
(general-determinant g:+ g:- g:* easy-zero?))
;;;LU decomposer, etc, must use correct arithmetic
(define matinv-numerical)
(define solve-numerical)
(define determinant-numerical)
(define numerical? #f)
(define (m:invert A)
(if numerical? (matinv-numerical A) (matinv-general A)))
(define (m:solve A b)
(if numerical? (solve-numerical A b) (solve-general A b)))
(define (m:determinant A)
(if numerical? (determinant-numerical A) (determinant-general A)))
(define (m:rsolve b A)
(cond ((up? b)
(column-matrix->up
(m:solve A (up->column-matrix b))))
((column-matrix? b)
(m:solve A b))
((down? b)
(row-matrix->down
(m:transpose
(m:solve (m:transpose A)
(m:transpose (down->row-matrix b))))))
((row-matrix? b)
(m:transpose
(m:solve (m:transpose A)
(m:transpose b))))
(else (error "I don't know how to solve:" b A))))
(define (m:solve-linear A b)
(m:rsolve b a))
(define (set-numerical! #!optional matinv solve determinant)
(set! numerical? #t)
(if (not (default-object? matinv)) (set! matinv-numerical matinv))
(if (not (default-object? solve)) (set! solve-numerical solve))
(if (not (default-object? determinant)) (set! determinant-numerical determinant))
'thank-you)
(define (set-symbolic!)
(set! numerical? #f)
'thank-you)
(define (m:apply matrix args)
(m:generate (m:num-rows matrix) (m:num-cols matrix)
(lambda (i j)
(g:apply (matrix-ref matrix i j)
args))))
(define (m:arity mat)
(let ((n (m:num-rows mat)) (m (m:num-cols mat)))
(let rowlp ((i 0) (a *at-least-zero*))
(if (fix:= i n)
a
(let collp ((j 0) (a a))
(if (fix:= j m)
(rowlp (fix:+ i 1) a)
(let ((b
(joint-arity a
(g:arity (matrix-ref mat i j)))))
(if b
(collp (fix:+ j 1) b)
#f))))))))
(define (m:partial-derivative matrix varspecs)
((m:elementwise
(lambda (f)
(generic:partial-derivative f varspecs)))
matrix))
(define (m:inexact? m)
(vector-exists (lambda (v)
(vector-exists g:inexact? v))
(matrix->array m)))
(assign-operation 'type m:type matrix?)
(assign-operation 'type-predicate m:type-predicate matrix?)
(assign-operation 'arity m:arity matrix?)
(assign-operation 'inexact? m:inexact? matrix?)
(assign-operation 'zero-like m:zero-like matrix?)
(assign-operation 'one-like m:one-like matrix?)
(assign-operation 'identity-like m:identity-like matrix?)
(assign-operation 'zero? m:zero? matrix?)
(assign-operation 'identity? m:identity? matrix?)
(assign-operation 'negate m:negate matrix?)
(assign-operation 'invert m:invert square-matrix?)
(assign-operation 'conjugate m:conjugate matrix?)
(assign-operation 'exp m:exp square-matrix?)
(assign-operation 'sin m:sin square-matrix?)
(assign-operation 'cos m:cos square-matrix?)
(assign-operation '= matrix=matrix matrix? matrix?)
(assign-operation '= matrix=scalar square-matrix? scalar?)
(assign-operation '= scalar=matrix scalar? square-matrix?)
(assign-operation '+ matrix+matrix matrix? matrix?)
(assign-operation '+ matrix+scalar square-matrix? scalar?)
(assign-operation '+ scalar+matrix scalar? square-matrix?)
(assign-operation '- matrix-matrix matrix? matrix?)
(assign-operation '- matrix-scalar square-matrix? scalar?)
(assign-operation '- scalar-matrix scalar? square-matrix?)
(assign-operation '* matrix*matrix matrix? matrix?)
(assign-operation '* matrix*scalar matrix? scalar?)
(assign-operation '* scalar*matrix scalar? matrix?)
(assign-operation '* down*matrix down? matrix?)
(assign-operation '* matrix*up matrix? up?)
(assign-operation '/ matrix/scalar matrix? scalar?)
(assign-operation '/ scalar/matrix scalar? square-matrix?)
(assign-operation '/ m:rsolve column-matrix? square-matrix?)
(assign-operation '/ m:rsolve up? square-matrix?)
(assign-operation '/ m:rsolve down? square-matrix?)
(assign-operation '/ m:rsolve row-matrix? square-matrix?)
(assign-operation '/ matrix/matrix matrix? square-matrix?)
(assign-operation 'dot-product m:dot-product-row row-matrix? row-matrix?)
(assign-operation 'dot-product m:dot-product-column column-matrix? column-matrix?)
(assign-operation 'outer-product m:outer-product column-matrix? row-matrix?)
(assign-operation 'cross-product m:cross-product-row row-matrix? row-matrix?)
(assign-operation 'cross-product m:cross-product-column column-matrix? column-matrix?)
(assign-operation 'expt m:expt square-matrix? exact-integer?)
(assign-operation 'partial-derivative
m:partial-derivative
matrix? any?)
(assign-operation 'apply m:apply matrix? any?)
(assign-operation 'determinant m:determinant square-matrix?)
(assign-operation 'determinant identity scalar?)
(assign-operation 'trace m:trace square-matrix?)
(assign-operation 'trace identity scalar?)
(assign-operation 'transpose m:transpose matrix?)
(assign-operation 'transpose identity scalar?)
(assign-operation 'dimension m:dimension square-matrix?)
(assign-operation 'dimension m:num-rows column-matrix?)
(assign-operation 'dimension m:num-cols row-matrix?)
(assign-operation 'dimension (lambda (x) 1) scalar?)
(assign-operation 'solve-linear-right m:rsolve row-matrix? square-matrix?)
(assign-operation 'solve-linear-right m:rsolve down? square-matrix?)
(assign-operation 'solve-linear-left m:solve-linear square-matrix? column-matrix?)
(assign-operation 'solve-linear-left m:solve-linear square-matrix? up?)
(assign-operation 'solve-linear m:solve-linear square-matrix? column-matrix?)
(assign-operation 'solve-linear m:solve-linear square-matrix? up?)
(assign-operation 'solve-linear m:solve-linear square-matrix? row-matrix?)
(assign-operation 'solve-linear m:solve-linear square-matrix? down?)
;;; Abstract matrices generalize matrix quantities.
(define (abstract-matrix symbol)
(make-literal abstract-matrix-type-tag symbol))
(define (am:arity v)
;; Default is matrix of numbers.
(get-property v 'arity *at-least-zero*))
(define (am:zero-like m)
(let ((z (abstract-matrix (list 'zero-like m))))
(add-property! z 'zero #t)
z))
(define (am:one-like m)
(let ((z (abstract-matrix (list 'one-like m))))
(add-property! z 'one #t)
z))
(define (am:id-like m)
(let ((z (abstract-matrix (list 'identity-like m))))
(add-property! z 'one #t)
z))
(define (make-matrix-combination operator #!optional reverse?)
(if (default-object? reverse?)
(lambda operands
(make-combination abstract-matrix-type-tag
operator operands))
(lambda operands
(make-combination abstract-matrix-type-tag
operator (reverse operands)))))
(assign-operation 'type m:type abstract-matrix?)
(assign-operation 'type-predicate m:type-predicate abstract-matrix?)
(assign-operation 'arity am:arity abstract-matrix?)
(assign-operation 'inexact? (has-property? 'inexact) abstract-matrix?)
(assign-operation 'zero-like am:zero-like abstract-matrix?)
(assign-operation 'zero? (has-property? 'zero) abstract-matrix?)
(assign-operation 'one? (has-property? 'one) abstract-matrix?)
(assign-operation 'identity? (has-property? 'one) abstract-matrix?)
(assign-operation
'negate (make-matrix-combination 'negate) abstract-matrix?)
(assign-operation
'invert (make-matrix-combination 'invert) square-abstract-matrix?)
(assign-operation
'conjugate (make-matrix-combination 'conjugate) abstract-matrix?)
(assign-operation
'exp (make-matrix-combination 'exp) square-abstract-matrix?)
(assign-operation
'sin (make-matrix-combination 'sin) square-abstract-matrix?)
(assign-operation
'cos (make-matrix-combination 'cos) square-abstract-matrix?)
;(assign-operation
; '= matrix=matrix abstract-matrix? abstract-matrix?)
(assign-operation
'+ (make-matrix-combination '+) abstract-matrix? abstract-matrix?)
(assign-operation
'+ (make-matrix-combination '+) matrix? abstract-matrix?)
(assign-operation
'+ (make-matrix-combination '+ 'r) abstract-matrix? matrix?)
(assign-operation
'+ (make-matrix-combination '+) scalar? square-abstract-matrix?)
(assign-operation
'+ (make-matrix-combination '+ 'r) square-abstract-matrix? scalar?)
(assign-operation
'- (make-matrix-combination '-) abstract-matrix? abstract-matrix?)
(assign-operation
'- (make-matrix-combination '-) matrix? abstract-matrix?)
(assign-operation
'- (make-matrix-combination '-) abstract-matrix? matrix?)
(assign-operation
'- (make-matrix-combination '-) scalar? square-abstract-matrix?)
(assign-operation
'- (make-matrix-combination '-) square-abstract-matrix? scalar?)
(assign-operation
'* (make-matrix-combination '*) abstract-matrix? abstract-matrix?)
(assign-operation
'* (make-matrix-combination '*) matrix? abstract-matrix?)
(assign-operation
'* (make-matrix-combination '*) abstract-matrix? matrix?)
(assign-operation
'* (make-matrix-combination '*) scalar? abstract-matrix?)
(assign-operation
'* (make-matrix-combination '* 'r) abstract-matrix? scalar?)
(assign-operation
'/ (make-matrix-combination '/) abstract-matrix? square-abstract-matrix?)
(assign-operation
'/ (make-matrix-combination '/) matrix? square-abstract-matrix?)
(assign-operation
'/ (make-matrix-combination '/) abstract-matrix? square-matrix?)
(assign-operation
'/ (make-matrix-combination '/) scalar? square-abstract-matrix?)
(assign-operation
'/ (make-matrix-combination '/) abstract-matrix? scalar?)
(assign-operation
'/ (make-matrix-combination '/) vector-quantity? square-abstract-matrix?)
(assign-operation
'expt (make-matrix-combination 'expt) square-abstract-matrix? exact-integer?)
(assign-operation
'partial-derivative
(make-matrix-combination 'partial-derivative)
abstract-matrix? any?)
;(assign-operation 'apply m:apply abstract-matrix? any?)
|