1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
#| -*- Scheme -*-
Copyright (c) 1987, 1988, 1989, 1990, 1991, 1995, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014,
2015, 2016, 2017, 2018, 2019, 2020
Massachusetts Institute of Technology
This file is part of MIT scmutils.
MIT scmutils is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.
MIT scmutils is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with MIT scmutils; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
USA.
|#
;;;; Power-series arithmetic using infinite streams.
(declare (usual-integrations))
(define (series:type ps) series-type-tag)
(define (series:type-predicate ps) series?)
(define (make-series arity stream)
(cons series-type-tag (cons arity stream)))
(define (series:arity series) (cadr series))
(define (series:promote-arity series)
(assert (equal? (series:arity series) *exactly-zero*))
(make-series *exactly-one* (series->stream series)))
(define (series->stream series)
(if (not (series? series))
(error "Not a series" series))
(cddr series))
(define (series:same-arity series-list)
(if (null? series-list)
*at-least-zero*
(a-reduce joint-arity
(map series:arity series-list))))
(define ((series-wrapper stream-function) . series-list)
(let ((arity (series:same-arity series-list)))
(make-series arity
(apply stream-function
(map series->stream
series-list)))))
(define (series:generate p #!optional arity)
(make-series (if (default-object? arity)
*exactly-one*
arity)
(let lp ((i 0))
(cons-stream (p i) (lp (+ i 1))))))
(define (series:for-each proc series . optionals)
(apply stream:for-each
proc
(series->stream series)
optionals))
(define ((series:elementwise proc) . series-list)
(let ((arity (series:same-arity series-list)))
(make-series arity
(apply map-streams
proc
(map series->stream series-list)))))
(define (series:print s . optionals)
(apply series:for-each
print-expression
s
optionals))
(define (series:ref series index)
(stream-ref (series->stream series) index))
;;; The following procedure takes a finite list and makes an infinite
;;; series that has the finite list as the initial segment of the
;;; coefficients.
(define (series . args)
(make-series *exactly-zero*
(let lp ((a args))
(if (null? a)
(infinite-stream-of (g:zero-like (car args)))
(cons-stream (car a) (lp (cdr a)))))))
(define (power-series . args)
(make-series *exactly-one*
(let lp ((a args))
(if (null? a)
(infinite-stream-of (g:zero-like (car args)))
(cons-stream (car a) (lp (cdr a)))))))
(define series:zero
(make-series *exactly-one* zero-stream))
(define series:one
(make-series *exactly-one*
(cons-stream :one zero-stream)))
(define series:identity
(make-series *exactly-one*
(cons-stream :zero
(cons-stream :one zero-stream))))
(define (constant-series c #!optional arity)
(make-series (if (default-object? arity)
*exactly-one*
arity)
(cons-stream c zero-stream)))
;;; The following procedures provide a set of capabilities for
;;; manipulating series.
(define (coefficient+series c series)
(let ((s (series->stream series)))
(make-series (series:arity series)
(cons-stream (g:+ c (head s)) (tail s)))))
(define (series+coefficient series c)
(let ((s (series->stream series)))
(make-series (series:arity series)
(cons-stream (g:+ (head s) c) (tail s)))))
(define (coefficient-series c series)
(let ((s (series->stream series)))
(make-series (series:arity series)
(cons-stream (g:- c (head s))
(negate-stream (tail s))))))
(define (series-coefficient series c)
(let ((s (series->stream series)))
(make-series (series:arity series)
(cons-stream (g:- (head s) c) (tail s)))))
;;; c*(a0 + a1*x + a2*x^2 + a3*x^3 + ...)
;;; = c*a0 + c*a1*x + c*a2*x^2 + c*a3*x^3 + ...
(define (coefficient*series c s)
(make-series (series:arity s)
(map-stream (lambda (x) (g:* c x))
(series->stream s))))
(define (series*coefficient s c)
(make-series (series:arity s)
(map-stream (lambda (x) (g:* x c))
(series->stream s))))
(define (series/coefficient s c)
(make-series (series:arity s)
(map-stream (lambda (x) (g:/ x c))
(series->stream s))))
(define (coefficient/series c s)
(series:mul (constant-series c (series:arity s))
(series:invert s)))
;;; (a0 + a1*x + a2*x^2 + ...) + (b0 + b1*x + b2*x^2 + ...)
;;; = (a0+b0) + (a1+b1)*x + (a2+b2)*x^2 + ...
(define add-series (combiner-padded-streams g:+ :zero))
(define series:add (series-wrapper add-series))
(define sub-series (combiner-padded-streams g:- :zero))
(define series:sub (series-wrapper sub-series))
(define (negate-stream s) (map-stream g:negate s))
(define series:negate (series-wrapper negate-stream))
;;; (a0 + a1*x + a2*x^2 + ...) * (b0 + b1*x + b2*x^2 + ...)
;;; = a0*b0 + (a0*b1+a1*b0)*x + (a0*b2+a1*b1+a2*b0)*x^2 + ...
;;; Each coefficient of the result is formed by reversing an initial
;;; segment of one series, multiplying it by the coefficients of an
;;; initial segment of the other series, and accumulating the
;;; products.
(define (stream:c*s c s)
(map-stream (lambda (x) (g:* c x)) s))
(define (stream:s/c s c)
(map-stream (lambda (x) (g:/ x c)) s))
(define (mul-series s1 s2)
(cons-stream (g:* (head s1) (head s2))
(add-series (stream:c*s (head s1) (tail s2))
(mul-series (tail s1) s2))))
(define series:mul (series-wrapper mul-series))
;;; what's this?
(define mul$series
(accumulation series:mul series:one))
(define (invert-series s)
(let ((s0 (g:/ :one (head s))))
(define inverted
(cons-stream s0
(mul-series (stream:c*s (g:negate s0) (tail s)) inverted)))
inverted))
(define series:invert (series-wrapper invert-series))
(define (series:div s1 s2)
(series:mul s1 (series:invert s2)))
(define div$series
(inverse-accumulation series:div
series:mul
series:invert
series:one))
(define (series:expt s e)
(letrec ((square (lambda (s) (mul-series s s)))
(series:one
(cons-stream :one zero-stream))
(zuras
(lambda (t e k)
(cons-stream :one
(stream:c*s (div-coeff e k)
(mul-series t
(zuras t
(sub-coeff e 1)
(fix:+ k 1)))))))
(iexpt
(lambda (s e)
(cond ((fix:< e 0)
(invert-series (iexpt s (fix:negate e))))
((fix:= e 0) :one)
((fix:= e 1) s)
((even? e)
(square
(iexpt s (fix:quotient e 2))))
(else
(mul-series s
(square
(iexpt s
(fix:quotient (fix:- e 1)
2))))))))
(expt
(lambda (s e)
(if (exact-integer? e)
(iexpt s e)
(stream:c*s (expt-coeff (head s) e)
(zuras (stream:s/c (tail s) (head s)) e 1))))))
(make-series (series:arity s)
(expt (series->stream s) e))))
(define series:derivative
(let ()
(define (deriv-iter s n)
(if (null? s)
'()
(cons-stream (g:* n (head s))
(deriv-iter (tail s) (fix:+ n 1)))))
(define (derivative s varnums)
(cond ((equal? (series:arity s) *exactly-zero*)
((series:elementwise
(lambda (term)
(generic:partial-derivative term varnums)))
s))
((equal? (series:arity s) *exactly-one*)
(if (not (null? varnums))
(error "Cannot yet take partial derivatives of a series"
s varnums))
(make-series *exactly-one*
(deriv-iter (tail (series->stream s)) 1)))
(else
(error "Cannot take derivative of non arity=1 series"
s varnums))))
derivative))
;;; The integral of a series
;;; a0 + a1*x + a2*x^2 + a3*x^3 + ...
;;; is c + a0*x + a1*x^2/2 + a2*x^3/3 + ...
;;; and is returned by the procedure *INTEGRATE-SERIES which
;;; takes the "initial condition" c as a required argument.
;;; For technical reasons, we are unable to use *INTEGRATE-SERIES
;;; with mutual-recursion as in
;;;
;;; (define cos-series (*integrate-series (series:negate sin-series) 1)) ;DOESN'T
;;; (define sin-series (*integrate-series cos-series 0)) ;WORK!
;;;
;;; However, we can achieve the desired effect by postponing the
;;; attachment of the constant term, as follows. We use the procedure
;;; INTEGRAL-SERIES-TAIL which returns the indefinite integral
;;; part of the integrated series, i.e., {a0 a1/2 a2/3 a3/4 ...}.
;;; Now, the mutual-recursion above can be made to work:
;;; (define cos-series
;;; (make-series 1 (cons-stream 1
;;; (series:negate (integral-series-tail sin-series)))))
;;; (define sin-series
;;; (make-series 1 (cons-stream 0 (integral-series-tail cos-series))))
;;;
;;; We have a special form, INTEGRATE-SERIES, to encapsulate this ugly mess. Look
;;; in the file fundamental-series.scm for examples.
(define integrate-helper
(lambda (s n)
(cons-stream (g:/ (head s) n)
(integrate-helper (tail s) (fix:+ n 1)))))
(define (*integrate-series series constant-term)
(make-series (series:arity series)
(cons-stream constant-term
(integrate-helper (series->stream series)
1))))
(define integral-series-tail
(lambda (series)
(integrate-helper (series->stream series) 1)))
;;; A series of arity zero may be summed to yield a value.
;;; Given a stream that represents such a series, the
;;; following procedure will produce a stream of partial sums.
;;; Note that this sequence is a stream, not a series.
(define (partial-sums series)
(if (not (equal? (series:arity series) *exactly-zero*))
(error "Cannot sum non arity=0 series" series))
(let ((stream (series->stream series)))
(partial-sums-stream (head stream) (tail stream))))
(define (partial-sums-stream value s)
(cons-stream value
(partial-sums-stream (g:+ value (head s))
(tail s))))
(define (series:sum series order)
(g:ref (partial-sums series) order))
;;; This procedure produces the result of substituting the argument
;;; for the indeterminate in the given power series.
;;; Note, if the argument is an OPERATOR, the resulting series may be
;;; an operator too, as the series is an implicit summation.
(define (series:value series arguments)
(define (collect stream-of-procs)
(let ((first-result (g:apply (head stream-of-procs) arguments)))
(if (series? first-result)
(let ((fr (series->stream first-result)))
(cons-stream (head fr)
(stream:+ (tail fr)
(collect (tail stream-of-procs)))))
(cons-stream first-result
(collect (tail stream-of-procs))))))
(cond ((equal? (series:arity series) *exactly-one*)
(cond ((fix:= (length arguments) 1)
(make-series *exactly-zero*
(map-streams g:*
(series->stream series)
(stream-of-powers (car arguments)
(g:one-like
(car arguments))))))
(else
(error "Wrong number of args to series" series arguments))))
((equal? (series:arity series) *exactly-zero*)
(make-series *exactly-zero*
(collect (series->stream series))))
(else
(error "Bad arity series" series arguments))))
(define (series:->function series)
(cond ((equal? (series:arity series) *exactly-zero*)
(series:promote-arity series))
((equal? (series:arity series) *exactly-one*)
series)
(else
(error "Wrong arity SERIES:->FUNCTION" series))))
;;; To go the other way we need Taylor's theorem to give us a power series:
(define (series:function-> f . opt)
(let ((x0 (if (null? opt) :zero (car opt))))
(make-series *exactly-one*
(let lp ((i 1) (fn f) (factn 1))
(cons-stream (g:/ (fn x0) factn)
(lp (fix:1+ i)
(g:derivative fn)
(* factn i)))))))
;;; To expand a series in a power of the argument
(define (series:inflate series exponent)
(assert (and (integer? exponent) (positive? exponent) (series? series)))
(make-series (series:arity series)
(stream:inflate (series->stream series)
(fix:- exponent 1))))
(define (series:zero-like x) series:zero)
(define (series:one-like x) series:one)
(assign-operation 'type series:type series?)
(assign-operation 'type-predicate series:type-predicate series?)
(assign-operation 'arity series:arity series?)
#|
(assign-operation 'one series:one series?)
(assign-operation 'zero series:zero series?)
(assign-operation 'identity series:identity series?)
|#
(assign-operation 'zero-like series:zero-like series?)
(assign-operation 'one-like series:one-like series?)
(assign-operation 'negate series:negate series?)
(assign-operation 'invert series:invert series?)
(assign-operation '+ series:add series? series?)
(assign-operation '+ coefficient+series not-series? series?)
(assign-operation '+ series+coefficient series? not-series?)
(assign-operation '- series:sub series? series?)
(assign-operation '- coefficient-series not-series? series?)
(assign-operation '- series-coefficient series? not-series?)
(assign-operation '* series:mul series? series?)
(assign-operation '* coefficient*series not-series? series?)
(assign-operation '* series*coefficient series? not-series?)
(assign-operation '/ series:div series? series?)
(assign-operation '/ coefficient/series not-series? series?)
(assign-operation '/ series/coefficient series? not-series?)
(assign-operation 'solve-linear-right series:div series? series?)
(assign-operation 'solve-linear-right coefficient/series not-series? series?)
(assign-operation 'solve-linear-right series/coefficient series? not-series?)
(assign-operation 'solve-linear-left (lambda (x y) (series:div y x)) series? series?)
(assign-operation 'solve-linear-left (lambda (x y) (series/coefficient y x)) not-series? series?)
(assign-operation 'solve-linear-left (lambda (x y) (coefficient/series y x)) series? not-series?)
(assign-operation 'solve-linear (lambda (x y) (series:div y x)) series? series?)
(assign-operation 'solve-linear (lambda (x y) (series/coefficient y x)) not-series? series?)
(assign-operation 'solve-linear (lambda (x y) (coefficient/series y x)) series? not-series?)
(assign-operation 'expt series:expt series? exact-integer?)
;(assign-operation 'exp exp-series operator?)
(assign-operation 'partial-derivative series:derivative series? any?)
(assign-operation 'apply series:value series? any?)
#| what to do here ???
`(integrate ,*integrate-series)
`(integrate-tail ,integral-series-tail)
`(partial-sums ,partial-sums)
`(->function ,->function)
`(function-> ,function->)
|#
;;; The coefficients of (1+x)^a
(define (binomial-series a)
(define (binomial-helper a n c)
(if (g:= a 0)
(cons-stream c zero)
(cons-stream c
(binomial-helper (g:- a 1) (g:+ n 1) (g:/ (g:* c a) n)))))
(make-series *exactly-one* (binomial-helper a 1 1)))
;;; without macros
(define cos-series
(make-series *exactly-one*
(cons-stream 1
(negate-stream (integral-series-tail sin-series)))))
(define sin-series
(make-series *exactly-one*
(cons-stream 0 (integral-series-tail cos-series))))
(define exp-series
(make-series *exactly-one*
(cons-stream 1 (integral-series-tail exp-series))))
(define cosh-series
(make-series *exactly-one*
(cons-stream 1 (integral-series-tail sinh-series))))
(define sinh-series
(make-series *exactly-one*
(cons-stream 0 (integral-series-tail cosh-series))))
(define tan-series
(series:div sin-series cos-series))
(define atan-series
(let ()
(define (atan-helper n s)
(if (even? n)
(cons-stream 0 (atan-helper (+ n 1) s))
(cons-stream (* s (/ 1 n))
(atan-helper (+ n 1) (- s)))))
(make-series *exactly-one*
(atan-helper 0 1))))
|