File: pseries.scm

package info (click to toggle)
scmutils 0~20230125%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 4,028 kB
  • sloc: lisp: 78,935; sh: 32; makefile: 10
file content (524 lines) | stat: -rw-r--r-- 16,762 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
#| -*- Scheme -*-

Copyright (c) 1987, 1988, 1989, 1990, 1991, 1995, 1997, 1998,
              1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
              2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014,
              2015, 2016, 2017, 2018, 2019, 2020
            Massachusetts Institute of Technology

This file is part of MIT scmutils.

MIT scmutils is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

MIT scmutils is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with MIT scmutils; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
USA.

|#

;;;; Power-series arithmetic using infinite streams.

(declare (usual-integrations))

(define (series:type ps) series-type-tag)
(define (series:type-predicate ps) series?)

(define (make-series arity stream)
  (cons series-type-tag (cons arity stream)))

(define (series:arity series) (cadr series))

(define (series:promote-arity series)
  (assert (equal? (series:arity series) *exactly-zero*))
  (make-series *exactly-one* (series->stream series)))

(define (series->stream series)
  (if (not (series? series))
      (error "Not a series" series))
  (cddr series))

(define (series:same-arity series-list)
  (if (null? series-list)
      *at-least-zero*
      (a-reduce joint-arity
		(map series:arity series-list))))

(define ((series-wrapper stream-function) . series-list)
  (let ((arity (series:same-arity series-list)))
    (make-series arity
		 (apply stream-function
			(map series->stream
			     series-list)))))

(define (series:generate p #!optional arity)
  (make-series (if (default-object? arity)
		   *exactly-one*
		   arity)
	       (let lp ((i 0))
		 (cons-stream (p i) (lp (+ i 1))))))

(define (series:for-each proc series . optionals)
  (apply stream:for-each
	 proc
	 (series->stream series)
	 optionals))

(define ((series:elementwise proc) . series-list)
  (let ((arity (series:same-arity series-list)))
    (make-series arity
		 (apply map-streams
			proc
			(map series->stream series-list)))))

(define (series:print s . optionals)
  (apply series:for-each
	 print-expression
	 s
	 optionals))

(define (series:ref series index)
  (stream-ref (series->stream series) index))

;;; The following procedure takes a finite list and makes an infinite
;;; series that has the finite list as the initial segment of the
;;; coefficients.

(define (series . args)
  (make-series *exactly-zero*
    (let lp ((a args))
      (if (null? a)
	  (infinite-stream-of (g:zero-like (car args)))
	  (cons-stream (car a) (lp (cdr a)))))))

(define (power-series . args)
  (make-series *exactly-one*
    (let lp ((a args))
      (if (null? a)
	  (infinite-stream-of (g:zero-like (car args)))
	  (cons-stream (car a) (lp (cdr a)))))))

(define series:zero 
  (make-series *exactly-one* zero-stream))

(define series:one 
  (make-series *exactly-one*
	       (cons-stream :one zero-stream)))

(define series:identity
  (make-series *exactly-one*
	       (cons-stream :zero
			    (cons-stream :one zero-stream))))


(define (constant-series c #!optional arity)
  (make-series (if (default-object? arity)
		   *exactly-one*
		   arity)
	       (cons-stream c zero-stream)))
    

;;; The following procedures provide a set of capabilities for
;;;  manipulating series.

(define (coefficient+series c series)
  (let ((s (series->stream series)))
    (make-series (series:arity series)
      (cons-stream (g:+ c (head s)) (tail s)))))

(define (series+coefficient series c)
  (let ((s (series->stream series)))
    (make-series (series:arity series)
      (cons-stream (g:+ (head s) c) (tail s)))))

(define (coefficient-series c series)
  (let ((s (series->stream series)))
    (make-series (series:arity series)
      (cons-stream (g:- c (head s))
		   (negate-stream (tail s))))))

(define (series-coefficient series c)
  (let ((s (series->stream series)))
    (make-series (series:arity series)
      (cons-stream (g:- (head s) c) (tail s)))))

;;; c*(a0 + a1*x + a2*x^2 + a3*x^3 + ...)
;;;  = c*a0 + c*a1*x + c*a2*x^2 + c*a3*x^3 + ...

(define (coefficient*series c s)
  (make-series (series:arity s)
    (map-stream (lambda (x) (g:* c x))
		(series->stream s))))

(define (series*coefficient s c)
  (make-series (series:arity s)
    (map-stream (lambda (x) (g:* x c))
		(series->stream s))))


(define (series/coefficient s c)
  (make-series (series:arity s)
    (map-stream (lambda (x) (g:/ x c))
		(series->stream s))))
    
(define (coefficient/series c s)
  (series:mul (constant-series c (series:arity s))
	      (series:invert s)))

;;; (a0 + a1*x + a2*x^2 + ...) + (b0 + b1*x + b2*x^2 + ...)
;;;   = (a0+b0) + (a1+b1)*x + (a2+b2)*x^2 + ...

(define add-series (combiner-padded-streams g:+ :zero))

(define series:add (series-wrapper add-series))

(define sub-series (combiner-padded-streams g:- :zero))

(define series:sub (series-wrapper sub-series))

(define (negate-stream s) (map-stream g:negate s))

(define series:negate (series-wrapper negate-stream))

;;; (a0 + a1*x + a2*x^2 + ...) * (b0 + b1*x + b2*x^2 + ...)
;;;   = a0*b0 + (a0*b1+a1*b0)*x + (a0*b2+a1*b1+a2*b0)*x^2 + ...
;;; Each coefficient of the result is formed by reversing an initial
;;;  segment of one series, multiplying it by the coefficients of an
;;;  initial segment of the other series, and accumulating the
;;;  products.

(define (stream:c*s c s)
  (map-stream (lambda (x) (g:* c x)) s))

(define (stream:s/c s c)
  (map-stream (lambda (x) (g:/ x c)) s))

(define (mul-series s1 s2)
  (cons-stream (g:* (head s1) (head s2))
	       (add-series (stream:c*s (head s1) (tail s2))
		    (mul-series (tail s1) s2))))

(define series:mul (series-wrapper mul-series))

;;; what's this?
(define mul$series
  (accumulation series:mul series:one))

(define (invert-series s)
  (let ((s0 (g:/ :one (head s))))
    (define inverted
      (cons-stream s0
        (mul-series (stream:c*s (g:negate s0) (tail s)) inverted)))
    inverted))

(define series:invert (series-wrapper invert-series))

(define (series:div s1 s2)
  (series:mul s1 (series:invert s2)))

(define div$series
  (inverse-accumulation series:div
			series:mul
			series:invert
			series:one))  

(define (series:expt s e)
  (letrec ((square (lambda (s) (mul-series s s)))
	   (series:one
	    (cons-stream :one zero-stream))
	   (zuras
	    (lambda (t e k)
	      (cons-stream :one
		(stream:c*s (div-coeff e k)
			    (mul-series t
					(zuras t
					       (sub-coeff e 1)
					       (fix:+ k 1)))))))
	   (iexpt
	    (lambda (s e)
	      (cond ((fix:< e 0)
		     (invert-series (iexpt s (fix:negate e))))
		    ((fix:= e 0) :one)
		    ((fix:= e 1) s)
		    ((even? e)
		     (square
		      (iexpt s (fix:quotient e 2))))
		    (else
		     (mul-series s
		       (square
			(iexpt s
			       (fix:quotient (fix:- e 1)
					     2))))))))
	   (expt
	    (lambda (s e)
	      (if (exact-integer? e)
		  (iexpt s e)
		  (stream:c*s (expt-coeff (head s) e)
		    (zuras (stream:s/c (tail s) (head s)) e 1))))))
    (make-series (series:arity s)
		 (expt (series->stream s) e))))

(define series:derivative
  (let ()
    (define (deriv-iter s n)
      (if (null? s)
	  '()
	  (cons-stream (g:* n (head s))
		       (deriv-iter (tail s) (fix:+ n 1)))))
    (define (derivative s varnums)
      (cond ((equal? (series:arity s) *exactly-zero*)
	     ((series:elementwise
	       (lambda (term)
		 (generic:partial-derivative term varnums)))
	      s))
	    ((equal? (series:arity s) *exactly-one*)
	     (if (not (null? varnums))
		 (error "Cannot yet take partial derivatives of a series"
			s varnums))
	     (make-series *exactly-one*
			  (deriv-iter (tail (series->stream s)) 1)))
	    (else
	     (error "Cannot take derivative of non arity=1 series"
		    s varnums))))
    derivative))

;;; The integral of a series
;;;           a0 + a1*x + a2*x^2 + a3*x^3 + ...
;;;  is       c + a0*x + a1*x^2/2 + a2*x^3/3 + ...
;;;  and is returned by the procedure *INTEGRATE-SERIES which
;;;  takes the "initial condition" c as a required argument. 
;;;  For technical reasons, we are unable to use *INTEGRATE-SERIES 
;;;  with mutual-recursion as in
;;;
;;;    (define cos-series (*integrate-series (series:negate sin-series) 1)) ;DOESN'T
;;;    (define sin-series (*integrate-series cos-series 0))                 ;WORK!
;;;
;;;  However, we can achieve the desired effect by postponing the
;;;  attachment of the constant term, as follows. We use the procedure
;;;  INTEGRAL-SERIES-TAIL which returns the indefinite integral
;;;  part of the integrated series, i.e., {a0 a1/2 a2/3 a3/4 ...}.
;;;  Now, the mutual-recursion above can be made to work:
;;;    (define cos-series
;;;      (make-series 1 (cons-stream 1
;;;                      (series:negate (integral-series-tail sin-series)))))
;;;    (define sin-series
;;;      (make-series 1 (cons-stream 0 (integral-series-tail cos-series))))
;;;
;;;  We have a special form, INTEGRATE-SERIES, to encapsulate this ugly mess.  Look
;;;   in the file fundamental-series.scm for examples.

(define integrate-helper
  (lambda (s n)
    (cons-stream (g:/ (head s) n)
		 (integrate-helper (tail s) (fix:+ n 1)))))

(define (*integrate-series series constant-term)
  (make-series (series:arity series)
	       (cons-stream constant-term
			    (integrate-helper (series->stream series)
					      1))))

(define integral-series-tail
  (lambda (series)
    (integrate-helper (series->stream series) 1)))

;;;  A series of arity zero may be summed to yield a value.
;;;  Given a stream that represents such a series, the
;;;  following procedure will produce a stream of partial sums.
;;;  Note that this sequence is a stream, not a series.

(define (partial-sums series)
  (if (not (equal? (series:arity series) *exactly-zero*))
      (error "Cannot sum non arity=0 series" series))
  (let ((stream (series->stream series)))
    (partial-sums-stream (head stream) (tail stream))))

(define (partial-sums-stream value s)
  (cons-stream value
	       (partial-sums-stream (g:+ value (head s))
				    (tail s))))

(define (series:sum series order)
  (g:ref (partial-sums series) order))

;;; This procedure produces the result of substituting the argument
;;; for the indeterminate in the given power series.  

;;; Note, if the argument is an OPERATOR, the resulting series may be
;;; an operator too, as the series is an implicit summation.

(define (series:value series arguments)
  (define (collect stream-of-procs)
    (let ((first-result (g:apply (head stream-of-procs) arguments)))
      (if (series? first-result)
	  (let ((fr (series->stream first-result)))
	    (cons-stream (head fr)
			 (stream:+ (tail fr)
				   (collect (tail stream-of-procs)))))
	  (cons-stream first-result
		       (collect (tail stream-of-procs))))))
  (cond ((equal? (series:arity series) *exactly-one*)
	 (cond ((fix:= (length arguments) 1)
		(make-series *exactly-zero*
		 (map-streams g:*
			      (series->stream series)
			      (stream-of-powers (car arguments)
						(g:one-like
						 (car arguments))))))
	       (else
		(error "Wrong number of args to series" series arguments))))
	((equal? (series:arity series) *exactly-zero*)
	 (make-series *exactly-zero*
	  (collect (series->stream series))))
	(else
	 (error "Bad arity series" series arguments))))

(define (series:->function series)
  (cond ((equal? (series:arity series) *exactly-zero*)
	 (series:promote-arity series))
	((equal? (series:arity series) *exactly-one*)
	 series)
	(else
	 (error "Wrong arity SERIES:->FUNCTION" series))))


;;; To go the other way we need Taylor's theorem to give us a power series:

(define (series:function-> f . opt)
  (let ((x0 (if (null? opt) :zero (car opt))))
    (make-series *exactly-one*
		 (let lp ((i 1) (fn f) (factn 1))
		   (cons-stream (g:/ (fn x0) factn)
				(lp (fix:1+ i)
				    (g:derivative fn)
				    (* factn i)))))))


;;; To expand a series in a power of the argument

(define (series:inflate series exponent)
  (assert (and (integer? exponent) (positive? exponent) (series? series)))
  (make-series (series:arity series)
	       (stream:inflate (series->stream series)
			       (fix:- exponent 1))))

(define (series:zero-like x)  series:zero)
(define (series:one-like x)   series:one)


(assign-operation 'type             series:type             series?)
(assign-operation 'type-predicate   series:type-predicate   series?)
(assign-operation 'arity      series:arity                  series?)
#|
(assign-operation 'one        series:one           series?)
(assign-operation 'zero       series:zero          series?)
(assign-operation 'identity   series:identity      series?)
|#
(assign-operation 'zero-like  series:zero-like     series?)
(assign-operation 'one-like   series:one-like      series?)

(assign-operation 'negate     series:negate        series?)
(assign-operation 'invert     series:invert        series?)

(assign-operation '+          series:add           series?        series?)
(assign-operation '+          coefficient+series   not-series?    series?)
(assign-operation '+          series+coefficient   series?        not-series?)

(assign-operation '-          series:sub           series?        series?)
(assign-operation '-          coefficient-series   not-series?    series?)
(assign-operation '-          series-coefficient   series?        not-series?)

(assign-operation '*          series:mul           series?        series?)
(assign-operation '*          coefficient*series   not-series?    series?)
(assign-operation '*          series*coefficient   series?        not-series?)

(assign-operation '/          series:div           series?        series?)
(assign-operation '/          coefficient/series   not-series?    series?)
(assign-operation '/          series/coefficient   series?        not-series?)


(assign-operation 'solve-linear-right         series:div           series?        series?)
(assign-operation 'solve-linear-right         coefficient/series   not-series?    series?)
(assign-operation 'solve-linear-right         series/coefficient   series?        not-series?)

(assign-operation 'solve-linear-left   (lambda (x y) (series:div y x))           series?        series?)
(assign-operation 'solve-linear-left   (lambda (x y) (series/coefficient y x))   not-series?    series?)
(assign-operation 'solve-linear-left   (lambda (x y) (coefficient/series y x))   series?        not-series?)

(assign-operation 'solve-linear   (lambda (x y) (series:div y x))           series?        series?)
(assign-operation 'solve-linear   (lambda (x y) (series/coefficient y x))   not-series?    series?)
(assign-operation 'solve-linear   (lambda (x y) (coefficient/series y x))   series?        not-series?)

(assign-operation 'expt       series:expt          series?        exact-integer?)

;(assign-operation 'exp       exp-series           operator?)

(assign-operation 'partial-derivative series:derivative    series? any?)
(assign-operation 'apply              series:value         series? any?)



#| what to do here ???

		     `(integrate ,*integrate-series)
		     `(integrate-tail ,integral-series-tail)
		     `(partial-sums ,partial-sums)
		     `(->function ,->function)
		     `(function-> ,function->)

|#

;;; The coefficients of (1+x)^a
(define (binomial-series a)
  (define (binomial-helper a n c)
    (if (g:= a 0)
	(cons-stream c zero)
	(cons-stream c
	  (binomial-helper (g:- a 1) (g:+ n 1) (g:/ (g:* c a) n)))))
  (make-series *exactly-one* (binomial-helper a 1 1)))


;;; without macros

(define cos-series
  (make-series *exactly-one*
    (cons-stream 1
		 (negate-stream (integral-series-tail sin-series)))))

(define sin-series
  (make-series *exactly-one*
	       (cons-stream 0 (integral-series-tail cos-series))))

(define exp-series
  (make-series *exactly-one*
	       (cons-stream 1 (integral-series-tail exp-series))))

(define cosh-series
  (make-series *exactly-one*
	       (cons-stream 1 (integral-series-tail sinh-series))))

(define sinh-series
  (make-series *exactly-one*
	       (cons-stream 0 (integral-series-tail cosh-series))))

(define tan-series
  (series:div sin-series cos-series))

(define atan-series  
  (let ()
    (define (atan-helper n s)
      (if (even? n) 
	  (cons-stream 0 (atan-helper (+ n 1) s))
	  (cons-stream (* s (/ 1 n))
		       (atan-helper (+ n 1) (- s)))))
    (make-series *exactly-one*
		 (atan-helper 0 1))))