File: vectors.scm

package info (click to toggle)
scmutils 0~20230125%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 4,028 kB
  • sloc: lisp: 78,935; sh: 32; makefile: 10
file content (390 lines) | stat: -rw-r--r-- 11,643 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#| -*- Scheme -*-

Copyright (c) 1987, 1988, 1989, 1990, 1991, 1995, 1997, 1998,
              1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
              2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014,
              2015, 2016, 2017, 2018, 2019, 2020
            Massachusetts Institute of Technology

This file is part of MIT scmutils.

MIT scmutils is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

MIT scmutils is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with MIT scmutils; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
USA.

|#

;;;;            Vectors

(declare (usual-integrations))

(define (v:type v) vector-type-tag)
(define (v:type-predicate v) vector-quantity?)

;;; This file makes the identification of the Scheme VECTOR data
;;; type with mathematical n-dimensional vectors.  These are 
;;; interpreted as column vectors by the matrix package.

;;; Thus we inherit the constructors VECTOR and MAKE-VECTOR,
;;; the selectors VECTOR-LENGTH and VECTOR-REF,
;;; the mutator VECTOR-SET!, and zero-based indexing.  
;;; We also get the iterator MAKE-INITIALIZED-VECTOR, 
;;; and the predicate VECTOR?

(define-integrable v:generate make-initialized-vector)
(define-integrable vector:generate make-initialized-vector)
(define-integrable v:dimension vector-length)

(define ((v:elementwise f) . vectors)
  (assert (and (not (null? vectors))
	       (for-all? vectors vector?)))
  (let ((n (v:dimension (car vectors))))
    (assert (for-all? (cdr vectors)
	      (lambda (m)
		(fix:= (v:dimension m) n))))
    (v:generate
     (vector-length (car vectors))
     (lambda (i)
       (g:apply f
		(map (lambda (v) (vector-ref v i))
		     vectors))))))

(define vector:elementwise v:elementwise)


(define (v:zero? v)
  (vector-forall g:zero? v))

(define (v:make-zero n)
  (make-vector n :zero))

(define (v:zero-like v)
  (v:generate (vector-length v)
	      (lambda (i)
		(g:zero-like (vector-ref v i)))))

(define (literal-vector name dimension)
  (v:generate dimension
	      (lambda (i)
		(string->symbol
		 (string-append (symbol->string name)
				"^"
				(number->string i))))))

(define (v:make-basis-unit n i)	; #(0 0 ... 1 ... 0) n long, 1 in ith position
  (v:generate n (lambda (j) (if (fix:= j i) :one :zero))))

(define (v:basis-unit? v)
  (let ((n (vector-length v)))
    (let lp ((i 0) (ans #f))
      (cond ((fix:= i n) ans)
	    ((g:zero? (vector-ref v i))
	     (lp (fix:+ i 1) ans))
	    ((and (g:one? (vector-ref v i)) (not ans))
	     (lp (fix:+ i 1) i))
	    (else #f)))))


(define (vector=vector v1 v2)
  (vector-forall g:= v1 v2))

(define (vector+vector v1 v2)
  (v:generate (vector-length v1)
    (lambda (i)
      (g:+ (vector-ref v1 i)
	   (vector-ref v2 i)))))
    
(define (vector-vector v1 v2)
  (v:generate (vector-length v1)
    (lambda (i)
      (g:- (vector-ref v1 i)
	   (vector-ref v2 i)))))

(define (v:negate v)
  (v:generate (vector-length v)
    (lambda (i)
      (g:negate (vector-ref v i)))))

(define (v:scale s)
  (lambda (v)
    (v:generate (vector-length v)
      (lambda (i)
	(g:* s (vector-ref v i))))))

(define (scalar*vector s v)
  (v:generate (vector-length v)
    (lambda (i)
      (g:* s (vector-ref v i)))))

(define (vector*scalar v s)
  (v:generate (vector-length v)
    (lambda (i)
      (g:* (vector-ref v i) s))))

(define (vector/scalar v s)
  (v:generate (vector-length v)
    (lambda (i)
      (g:/ (vector-ref v i) s))))

(define (v:inner-product v1 v2)
  (assert (and (vector? v1) (vector? v2))
	  "Not vectors -- INNER-PRODUCT" (list v1 v2))
  (let ((n (v:dimension v1)))
    (assert (fix:= n (v:dimension v2))
	    "Not same dimension -- INNER-PRODUCT" (list v1 v2))
    (let lp ((i 0) (ans :zero))
      (if (fix:= i n)
	  ans
	  (lp (fix:+ i 1)
	      (g:+ ans
		   (g:* (g:conjugate (vector-ref v1 i))
			(vector-ref v2 i))))))))
    
(define (v:dot-product v1 v2)
  (assert (and (vector? v1) (vector? v2))
	  "Not vectors -- V:DOT-PRODUCT" (list v1 v2))
  (let ((n (v:dimension v1)))
    (assert (fix:= n (v:dimension v2))
	    "Not same dimension -- V:DOT-PRODUCT" (list v1 v2))
    (let lp ((i 0) (ans :zero))
      (if (fix:= i n)
	  ans
	  (lp (fix:+ i 1)
	      (g:+ ans
		   (g:* (vector-ref v1 i)
			(vector-ref v2 i))))))))


(define (v:square v)
  (v:dot-product v v))

(define (v:cube v)
  (scalar*vector (v:dot-product v v) v))

(define (euclidean-norm v)
  (g:sqrt (v:dot-product v v)))

(define (complex-norm v)
  (g:sqrt (v:inner-product v v)))

(define (maxnorm v)
  (vector-accumulate max g:magnitude :zero v))


(define (v:make-unit v)
  (scalar*vector (g:invert (euclidean-norm v))
		 v))

(define (v:unit? v)
  (g:one? (v:dot-product v v)))


(define (v:conjugate v)
  ((v:elementwise g:conjugate) v))

(define (v:cross-product v w)
  (assert (and (fix:= (vector-length v) 3)
	       (fix:= (vector-length w) 3))
	  "Cross product of non-3-dimensional vectors?"
	  (list v w))
  (let ((v0 (vector-ref v 0))
	(v1 (vector-ref v 1))
	(v2 (vector-ref v 2))
	(w0 (vector-ref w 0))
	(w1 (vector-ref w 1))
	(w2 (vector-ref w 2)))
    (vector (g:- (g:* v1 w2) (g:* v2 w1))
	    (g:- (g:* v2 w0) (g:* v0 w2))
	    (g:- (g:* v0 w1) (g:* v1 w0)))))

(define (general-inner-product addition multiplication :zero)
  (define (ip v1 v2)
    (let ((n (vector-length v1)))
      (if (not (fix:= n (vector-length v2)))
	  (error "Unequal dimensions -- INNER-PRODUCT" v1 v2))
      (if (fix:= n 0)
	  :zero
	  (let loop ((i 1)
		     (ans (multiplication (vector-ref v1 0)
					  (vector-ref v2 0))))
	    (if (fix:= i n)
		ans
		(loop (fix:+ i 1)
		      (addition ans
				(multiplication (vector-ref v1 i)
						(vector-ref v2 i)))))))))
  ip)

(define (v:apply vec args)
  (v:generate (vector-length vec)
    (lambda (i)
      (g:apply (vector-ref vec i) args))))

(define (v:arity v)
  (let ((n (vector-length v)))
    (cond ((fix:= n 0)
	   (error "I don't know the arity of the empty vector"))
	  (else
	   (let lp ((i 1) (a (g:arity (vector-ref v 0))))
	     (if (fix:= i n)
		 a
		 (let ((b (joint-arity a (g:arity (vector-ref v i)))))
		   (if b
		       (lp (+ i 1) b)
		       #f))))))))

(define (v:partial-derivative vector varspecs)
  ((v:elementwise
    (lambda (f)
      (generic:partial-derivative f varspecs)))
   vector))

(define (v:inexact? v)
  (vector-exists g:inexact? v))


(assign-operation 'type                v:type            vector?)
(assign-operation 'type-predicate      v:type-predicate  vector?)
(assign-operation 'arity               v:arity           vector?)
(assign-operation 'inexact?            v:inexact?        vector?)

(assign-operation 'zero-like           v:zero-like       vector?)

(assign-operation 'zero?               v:zero?           vector?)
(assign-operation 'negate              v:negate          vector?)
(assign-operation 'magnitude           complex-norm    vector?)
(assign-operation 'abs                 euclidean-norm  vector?)
(assign-operation 'conjugate           v:conjugate       vector?)

(assign-operation '=           vector=vector       vector? vector?)
(assign-operation '+           vector+vector       vector? vector?)
(assign-operation '-           vector-vector       vector? vector?)

(assign-operation '*           scalar*vector       scalar? vector?)
(assign-operation '*           vector*scalar       vector? scalar?)

(assign-operation '/           vector/scalar       vector? scalar?)

(assign-operation 'solve-linear-right    vector/scalar       vector? scalar?)
(assign-operation 'solve-linear-left    (lambda (x y) (vector/scalar y x))   scalar? vector?)
(assign-operation 'solve-linear         (lambda (x y) (vector/scalar y x))   scalar? vector?)



;;; subsumed by s:dot-product
;;; (assign-operation 'dot-product v:dot-product   vector? vector?)

(assign-operation 'cross-product v:cross-product   vector? vector?)

(assign-operation 'dimension v:dimension  vector?)


#| ;;; Should be subsumed by deriv:pd in deriv.scm.
(assign-operation 'partial-derivative
		  v:partial-derivative
		  vector? any?)
|#

#| ;;; Should be subsumed by s:apply in structs.scm.
(assign-operation 'apply       v:apply           vector? any?)
|#

;;; Abstract vectors generalize vector quantities.

(define (abstract-vector symbol)
  (make-literal vector-type-tag symbol))

(define (av:arity v)
  ;; Default is vector of numbers.
  (get-property v 'arity *at-least-zero*))

(define (av:zero-like v)
  (let ((z (abstract-vector (list 'zero-like v))))
    (add-property! z 'zero #t)
    z))

(define (make-vector-combination operator #!optional reverse?)
  (if (default-object? reverse?)
      (lambda operands 
	(make-combination vector-type-tag
			  operator operands))
      (lambda operands 
	(make-combination vector-type-tag
			  operator (reverse operands)))))

(assign-operation 'type           v:type             abstract-vector?)
(assign-operation 'type-predicate v:type-predicate   abstract-vector?)
(assign-operation 'arity          av:arity           abstract-vector?)

(assign-operation 'inexact? (has-property? 'inexact) abstract-vector?)

(assign-operation 'zero-like      av:zero-like       abstract-vector?)

(assign-operation 'zero?    (has-property? 'zero)    abstract-vector?)

(assign-operation
   'negate     (make-vector-combination 'negate)     abstract-vector?)
(assign-operation
   'magnitude  (make-vector-combination 'magnitude)  abstract-vector?)
(assign-operation
   'abs        (make-vector-combination 'abs)        abstract-vector?)
(assign-operation
   'conjugate  (make-vector-combination 'conjugate)  abstract-vector?)
#|
(assign-operation
   'derivative (make-vector-combination 'derivative) abstract-vector?)
|#

;(assign-operation '= vector=vector abstract-vector? abstract-vector?)
(assign-operation
   '+  (make-vector-combination '+) abstract-vector? abstract-vector?)
(assign-operation
   '+  (make-vector-combination '+) vector?          abstract-vector?)
(assign-operation
   '+  (make-vector-combination '+ 'r)       abstract-vector? vector?)

(assign-operation
   '-  (make-vector-combination '-) abstract-vector? abstract-vector?)
(assign-operation
   '-  (make-vector-combination '-) vector?          abstract-vector?)
(assign-operation
   '-  (make-vector-combination '-) abstract-vector? vector?)
		     
(assign-operation
   '*  (make-numerical-combination '*)    abstract-vector? abstract-vector?)
(assign-operation
   '*  (make-numerical-combination '*)    vector?          abstract-vector?)
(assign-operation
   '*  (make-numerical-combination '* 'r) abstract-vector? vector?)
(assign-operation
   '*  (make-vector-combination '*)       scalar?          abstract-vector?)
(assign-operation
   '*  (make-vector-combination '* 'r)    abstract-vector? scalar?)
		     
(assign-operation
   '/  (make-vector-combination '/)       abstract-vector? scalar?)


(assign-operation
   'dot-product (make-vector-combination 'dot-product)
   abstract-vector? abstract-vector?)

(assign-operation 'partial-derivative
		  (make-vector-combination 'partial-derivative)
		  abstract-vector? any?)

;;; I don't know what to do here -- GJS.  This is part of the literal
;;; function problem.

;(assign-operation 'apply  v:apply              abstract-vector? any?)