1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
<!--
Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The SCons Foundation
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-->
<!--
=head1 Using and writing dependency scanners
QuickScan allows simple target-independent scanners to be set up for
source files. Only one QuickScan scanner may be associated with any given
source file and environment, although the same scanner may (and should)
be used for multiple files of a given type.
A QuickScan scanner is only ever invoked once for a given source file,
and it is only invoked if the file is used by some target in the tree
(i.e., there is a dependency on the source file).
QuickScan is invoked as follows:
QuickScan CONSENV CODEREF, FILENAME [, PATH]
The subroutine referenced by CODEREF is expected to return a list of
filenames included directly by FILE. These filenames will, in turn, be
scanned. The optional PATH argument supplies a lookup path for finding
FILENAME and/or files returned by the user-supplied subroutine. The PATH
may be a reference to an array of lookup-directory names, or a string of
names separated by the system's separator character (':' on UNIX systems,
';' on Windows NT).
The subroutine is called once for each line in the file, with $_ set to the
current line. If the subroutine needs to look at additional lines, or, for
that matter, the entire file, then it may read them itself, from the
filehandle SCAN. It may also terminate the loop, if it knows that no further
include information is available, by closing the filehandle.
Whether or not a lookup path is provided, QuickScan first tries to lookup
the file relative to the current directory (for the top-level file
supplied directly to QuickScan), or from the directory containing the
file which referenced the file. This is not very general, but seems good
enough, especially if you have the luxury of writing your own utilities
and can control the use of the search path in a standard way.
Here's a real example, taken from a F<Construct> file here:
sub cons::SMFgen {
my($env, @tables) = @_;
foreach $t (@tables) {
$env->QuickScan(sub { /\b\S*?\.smf\b/g }, "$t.smf",
$env->{SMF_INCLUDE_PATH});
$env->Command(["$t.smdb.cc","$t.smdb.h","$t.snmp.cc",
"$t.ami.cc", "$t.http.cc"], "$t.smf",
q(smfgen %( %SMF_INCLUDE_OPT %) %<));
}
}
The subroutine above finds all names of the form <name>.smf in the
file. It will return the names even if they're found within comments,
but that's OK (the mechanism is forgiving of extra files; they're just
ignored on the assumption that the missing file will be noticed when
the program, in this example, smfgen, is actually invoked).
[NOTE that the form C<$env-E<gt>QuickScan ...> and C<$env-E<gt>Command
...> should not be necessary, but, for some reason, is required
for this particular invocation. This appears to be a bug in Perl or
a misunderstanding on my part; this invocation style does not always
appear to be necessary.]
Here is another way to build the same scanner. This one uses an
explicit code reference, and also (unnecessarily, in this case) reads
the whole file itself:
sub myscan {
my(@includes);
do {
push(@includes, /\b\S*?\.smf\b/g);
} while <SCAN>;
@includes
}
Note that the order of the loop is reversed, with the loop test at the
end. This is because the first line is already read for you. This scanner
can be attached to a source file by:
QuickScan $env \&myscan, "$_.smf";
This final example, which scans a different type of input file, takes
over the file scanning rather than being called for each input line:
$env->QuickScan(
sub { my(@includes) = ();
do {
push(@includes, $3)
if /^(#include|import)\s+(\")(.+)(\")/ && $3
} while <SCAN>;
@includes
},
"$idlFileName",
"$env->{CPPPATH};$BUILD/ActiveContext/ACSCLientInterfaces"
);
-->
<para>
&SCons; has built-in scanners that know how to look in
C, Fortran and IDL source files for information about
other files that targets built from those files depend on--for example,
in the case of files that use the C preprocessor,
the <filename>.h</filename> files that are specified
using <literal>#include</literal> lines in the source.
You can use the same mechanisms that &SCons; uses to create
its built-in scanners to write scanners of your own for file types
that &SCons; does not know how to scan "out of the box."
</para>
<section>
<title>A Simple Scanner Example</title>
<para>
Suppose, for example, that we want to create a simple scanner
for <filename>.foo</filename> files.
A <filename>.foo</filename> file contains some text that
will be processed,
and can include other files on lines that begin
with <literal>include</literal>
followed by a file name:
</para>
<programlisting>
include filename.foo
</programlisting>
<para>
Scanning a file will be handled by a Python function
that you must supply.
Here is a function that will use the Python
<filename>re</filename> module
to scan for the <literal>include</literal> lines in our example:
</para>
<programlisting>
import re
include_re = re.compile(r'^include\s+(\S+)$', re.M)
def kfile_scan(node, env, path, arg):
contents = node.get_text_contents()
return include_re.findall(contents)
</programlisting>
<para>
The scanner function must
accept the four specified arguments
and return a list of implicit dependencies.
Presumably, these would be dependencies found
from examining the contents of the file,
although the function can perform any
manipulation at all to generate the list of
dependencies.
</para>
<variablelist>
<varlistentry>
<term>node</term>
<listitem>
<para>
An &SCons; node object representing the file being scanned.
The path name to the file can be
used by converting the node to a string
using the <literal>str()</literal> function,
or an internal &SCons; <literal>get_text_contents()</literal>
object method can be used to fetch the contents.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>env</term>
<listitem>
<para>
The construction environment in effect for this scan.
The scanner function may choose to use construction
variables from this environment to affect its behavior.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>path</term>
<listitem>
<para>
A list of directories that form the search path for included files
for this scanner.
This is how &SCons; handles the &cv-link-CPPPATH; and &cv-link-LIBPATH;
variables.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>arg</term>
<listitem>
<para>
An optional argument that you can choose to
have passed to this scanner function by
various scanner instances.
</para>
</listitem>
</varlistentry>
</variablelist>
<para>
A Scanner object is created using the &Scanner; function,
which typically takes an <literal>skeys</literal> argument
to associate the type of file suffix with this scanner.
The Scanner object must then be associated with the
&cv-link-SCANNERS; construction variable of a construction environment,
typically by using the &Append; method:
</para>
<programlisting>
kscan = Scanner(function = kfile_scan,
skeys = ['.k'])
env.Append(SCANNERS = kscan)
</programlisting>
<para>
When we put it all together, it looks like:
</para>
<scons_example name="scan">
<file name="SConstruct" printme="1">
import re
include_re = re.compile(r'^include\s+(\S+)$', re.M)
def kfile_scan(node, env, path):
contents = node.get_text_contents()
includes = include_re.findall(contents)
return includes
kscan = Scanner(function = kfile_scan,
skeys = ['.k'])
env = Environment(ENV = {'PATH' : '__ROOT__/usr/local/bin'})
env.Append(SCANNERS = kscan)
env.Command('foo', 'foo.k', 'kprocess < $SOURCES > $TARGET')
</file>
<file name="foo.k">
include other_file
</file>
<file name="other_file">
other_file
</file>
<directory name="__ROOT__/usr"></directory>
<directory name="__ROOT__/usr/local"></directory>
<directory name="__ROOT__/usr/local/bin"></directory>
<file name="__ROOT_/usr/local/bin/kprocess" chmod="755">
cat
</file>
</scons_example>
<!--
<para>
Now if we run &scons;
and then re-run it after changing the contents of
<filename>other_file</filename>,
the <filename>foo</filename>
target file will be automatically rebuilt:
</para>
<scons_output example="scan">
<scons_output_command>scons -Q</scons_output_command>
<scons_output_command output=" [CHANGE THE CONTENTS OF other_file]">edit other_file</scons_output_command>
<scons_output_command>scons -Q</scons_output_command>
<scons_output_command>scons -Q</scons_output_command>
</scons_output>
-->
</section>
<section>
<title>Adding a search path to a scanner: &FindPathDirs;</title>
<para>
Many scanners need to search for included files or dependencies
using a path variable; this is how &cv-link-CPPPATH; and
&cv-link-LIBPATH; work. The path to search is passed to your
scanner as the <literal>path</literal> argument. Path variables
may be lists of nodes, semicolon-separated strings, or even
contain SCons variables which need to be expanded. Fortunately,
&SCons; provides the &FindPathDirs; function which itself returns
a function to expand a given path (given as a SCons construction
variable name) to a list of paths at the time the scanner is
called. Deferring evaluation until that point allows, for
instance, the path to contain $TARGET references which differ for
each file scanned.
</para>
<para>
Using &FindPathDirs; is quite easy. Continuing the above example,
using KPATH as the construction variable with the search path
(analogous to &cv-link-CPPPATH;), we just modify the &Scanner;
constructor call to include a path keyword arg:
</para>
<scons_example name="findpathdirs">
<file name="SConstruct" printme="1">
kscan = Scanner(function = kfile_scan,
skeys = ['.k'],
path=FindPathDirs('KPATH'))
</file>
</scons_example>
<para>
FindPathDirs returns a callable object that, when called, will
essentially expand the elements in env['KPATH'] and tell the
scanner to search in those dirs. It will also properly add
related repository and variant dirs to the search list. As a side
note, the returned method stores the path in an efficient way so
lookups are fast even when variable substitutions may be needed.
This is important since many files get scanned in a typical build.
</para>
</section>
|