File: hgraph_order_cp.c

package info (click to toggle)
scotch 5.0.1.dfsg-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 6,088 kB
  • ctags: 4,515
  • sloc: ansic: 46,851; makefile: 2,093; yacc: 588; lex: 263; fortran: 90
file content (513 lines) | stat: -rw-r--r-- 28,083 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/* Copyright 2004,2007 ENSEIRB, INRIA & CNRS
**
** This file is part of the Scotch software package for static mapping,
** graph partitioning and sparse matrix ordering.
**
** This software is governed by the CeCILL-C license under French law
** and abiding by the rules of distribution of free software. You can
** use, modify and/or redistribute the software under the terms of the
** CeCILL-C license as circulated by CEA, CNRS and INRIA at the following
** URL: "http://www.cecill.info".
** 
** As a counterpart to the access to the source code and rights to copy,
** modify and redistribute granted by the license, users are provided
** only with a limited warranty and the software's author, the holder of
** the economic rights, and the successive licensors have only limited
** liability.
** 
** In this respect, the user's attention is drawn to the risks associated
** with loading, using, modifying and/or developing or reproducing the
** software by the user in light of its specific status of free software,
** that may mean that it is complicated to manipulate, and that also
** therefore means that it is reserved for developers and experienced
** professionals having in-depth computer knowledge. Users are therefore
** encouraged to load and test the software's suitability as regards
** their requirements in conditions enabling the security of their
** systems and/or data to be ensured and, more generally, to use and
** operate it in the same conditions as regards security.
** 
** The fact that you are presently reading this means that you have had
** knowledge of the CeCILL-C license and that you accept its terms.
*/
/************************************************************/
/**                                                        **/
/**   NAME       : hgraph_order_cp.c                       **/
/**                                                        **/
/**   AUTHOR     : Francois PELLEGRINI                     **/
/**                                                        **/
/**   FUNCTION   : This module orders vertices by compres- **/
/**                sing vertices with identical adjacency  **/
/**                structure.                              **/
/**                                                        **/
/**   DATES      : # Version 3.2  : from : 29 aug 1998     **/
/**                                 to     12 sep 1998     **/
/**                # Version 3.3  : from : 01 oct 1998     **/
/**                                 to     03 jan 1999     **/
/**                # Version 4.0  : from : 01 jan 2003     **/
/**                                 to     05 jan 2005     **/
/**                # Version 5.0  : from : 29 dec 2006     **/
/**                                 to     10 sep 2007     **/
/**                                                        **/
/**   NOTES      : # Pre-hashing proves itself extremely   **/
/**                  efficient, since for graphs that      **/
/**                  will be compressed very few writes    **/
/**                  will be performed in the pre-hashing  **/
/**                  array, and for others, for which pre- **/
/**                  hashing costs much more, it will save **/
/**                  time at the end.                      **/
/**                                                        **/
/************************************************************/

/*
**  The defines and includes.
*/

#define HGRAPH_ORDER_CP

#include "module.h"
#include "common.h"
#include "parser.h"
#include "graph.h"
#include "order.h"
#include "hgraph.h"
#include "hgraph_order_cp.h"
#include "hgraph_order_st.h"

/*****************************/
/*                           */
/* This is the main routine. */
/*                           */
/*****************************/

/* This routine performs the ordering.
** It returns:
** - 0   : if the ordering could be computed.
** - !0  : on error.
*/

int
hgraphOrderCp (
const Hgraph * restrict const     finegrafptr,
Order * restrict const            fineordeptr,
const Gnum                        ordenum,        /*+ Zero-based ordering number +*/
OrderCblk * restrict const        cblkptr,        /*+ Single column-block        +*/
const HgraphOrderCpParam * const  paraptr)
{
  Hgraph                        coargrafdat;      /* Compressed halo subgraph                                              */
  Order                         coarordedat;      /* Ordering of compressed halo subgraph                                  */
  Gnum * restrict               coarperitab;      /* Coarse permutation array                                              */
  const Gnum * restrict         coarperitax;      /* Temporary based access to coarperitab                                 */
  Gnum                          coarvertnbr;      /* Number of compressed vertices                                         */
  Gnum                          coarvertnum;      /* Number of current compressed vertex                                   */
  Gnum * restrict               coarvsiztax;      /* Array of coarse vertex sizes (as number of merged fine vertices)      */
  Gnum                          coaredgenbr;      /* Number of compressed edges                                            */
  Gnum                          coaredgenum;      /* Number of current compressed edge                                     */
  Gnum                          coarenohnnd;      /* Position in edge array of first edge of first halo vertex             */
  Gnum * restrict               coarvpostax;      /* Position in fine permutation of fine vertices merged into same vertex */
  Gnum * restrict               finecoartax;      /* Original to compressed vertex number array                            */
  HgraphOrderCpMate * restrict  finematetab;      /* Array of fine vertices that may be compressed with current vertex     */
  HgraphOrderCpHash * restrict  finehashtab;      /* Neighbor hash table                                                   */
  Gnum                          finehashmsk;      /* Mask for access to hash table                                         */
  int * restrict                finehasptab;      /* Pre-hashing table                                                     */
  Gnum                          finehaspmsk;      /* Mask for access to pre-hashing table                                  */
  Gnum * restrict               finehsumtax;      /* Array of hash values for each original vertex                         */
  Gnum                          finevertnbr;      /* Number of fine vertices in compressed elimination tree                */
  Gnum                          finevertnum;      /* Number of current original vertex                                     */
  Gnum                          finevsizsum;      /* Sum of compressed vertex sizes to build fine inverse permutation      */
  void *                        dataptr;          /* Flag of memory allocation success                                     */

  for (finehashmsk = 15;                          /* Set neighbor hash table sizes */
       finehashmsk < finegrafptr->s.degrmax;
       finehashmsk = finehashmsk * 2 + 1) ;
  finehashmsk = finehashmsk * 4 + 3;              /* Fill hash table at 1/4 of capacity */

  if (((finecoartax = (Gnum *) memAlloc (finegrafptr->s.vertnbr * sizeof (Gnum))) == NULL) ||
      (memAllocGroup ((void **) (void *)
                      &finehashtab, (size_t) ((finehashmsk + 1)      * sizeof (HgraphOrderCpHash)),
                      &finematetab, (size_t) (finegrafptr->s.degrmax * sizeof (HgraphOrderCpMate)), NULL) == NULL) ||
      ((finehsumtax = (Gnum *) memAlloc (finegrafptr->vnohnbr * sizeof (Gnum))) == NULL)) {
    errorPrint ("hgraphOrderCp: out of memory (1)");
    if (finecoartax != NULL) {
      if (finehashtab != NULL)
        memFree (finehashtab);
      memFree (finecoartax);
    }
    return (1);
  }
  finehsumtax -= finegrafptr->s.baseval;          /* TRICK: do not base finecoartax yet (see later) */

  finehasptab = (int *) finecoartax;              /* Use finecoartab as temporary pre-hash table */
  for (finehaspmsk = 1;                           /* Get pre-hash mask that fits in finecoartab  */
       finehaspmsk <= finegrafptr->s.vertnbr;     /* Smallest (2^i)-1 value > vertnbr            */
       finehaspmsk = finehaspmsk * 2 + 1) ;
  finehaspmsk >>= 1;                              /* Ensure masked data will always fit into finecoartab array */
  finehaspmsk = (finehaspmsk * (sizeof (Gnum) / sizeof (int))) + ((sizeof (Gnum) / sizeof (int)) - 1);
  if (finehaspmsk >= ((sizeof (int) << (3 + 1)) - 1)) /* Only use 1/8 of array for pre-hashing, for increased cache locality */
    finehaspmsk >>= 3;
  memSet (finehasptab, 0, (finehaspmsk + 1) * sizeof (int)); /* Initialize pre-hash table */

  for (finevertnum = finegrafptr->s.baseval, coarvertnbr = finegrafptr->vnohnbr; /* For all non-halo vertices */
       finevertnum < finegrafptr->vnohnnd; finevertnum ++) {
    Gnum                fineedgenum;              /* Current edge number */
    Gnum                finehsumval;              /* Hash sum value      */
    Gnum                finehsumbit;

    for (fineedgenum = finegrafptr->s.verttax[finevertnum], finehsumval = finevertnum; /* For all edges, including halo edges */
         fineedgenum < finegrafptr->s.vendtax[finevertnum]; fineedgenum ++)
      finehsumval += finegrafptr->s.edgetax[fineedgenum];

    finehsumtax[finevertnum] = finehsumval;

    finehsumbit = finehsumval & ((sizeof (int) << 3) - 1); /* Get bit mask and byte position (division should be optimized into a shift) */
    finehsumval /= (sizeof (int) << 3);
    finehsumval &= finehaspmsk;                   /* Make hash sum value fit into finehasptab                                                   */
    coarvertnbr -= (finehasptab[finehsumval] >> finehsumbit) & 1;  /* If hash value already in pre-hash table, maybe one more vertex compressed */
    finehasptab[finehsumval] |= (1 << finehsumbit); /* Put value into pre-hash table anyway                                                     */
  }

  if ((double) coarvertnbr > ((double) finegrafptr->vnohnbr * paraptr->comprat)) { /* If graph needs not be compressed */
    memFree (finehsumtax + finegrafptr->s.baseval);
    memFree (finehashtab);
    memFree (finecoartax);                        /* Not yet based */
    return (hgraphOrderSt (finegrafptr, fineordeptr, ordenum, cblkptr, paraptr->stratunc));
  }

  finecoartax -= finegrafptr->s.baseval;          /* Base finecoartab array */

  memSet (finehashtab, ~0, (finehashmsk + 1) * sizeof (HgraphOrderCpHash));

  hgraphInit (&coargrafdat);                      /* Initialize compressed halo graph structure                               */
  coargrafdat.s.baseval = 1;                      /* Base coarse graph to 1 because hgraphOrderHb and hgraphOrderHf prefer it */

  for (finevertnum = finegrafptr->s.baseval, coarvertnbr = coargrafdat.s.baseval, coaredgenbr = finegrafptr->s.edgenbr; /* For all non-halo vertices */
       finevertnum < finegrafptr->vnohnnd; finevertnum ++) {
    Gnum                finedegrval;              /* Degree of current fine vertex     */
    Gnum                finehsumval;              /* Current hash sum value            */
    Gnum                finematenbr;              /* Number of mates of current vertex */
    Gnum                fineedgenum;              /* Current edge number               */

    finedegrval = finegrafptr->s.vendtax[finevertnum] - finegrafptr->s.verttax[finevertnum];
    finehsumval = finehsumtax[finevertnum];
    finematenbr = 0;                              /* Reset potential mate array */

    for (fineedgenum = finegrafptr->s.verttax[finevertnum]; /* For all edges, including halo edges */
         fineedgenum < finegrafptr->s.vendtax[finevertnum]; fineedgenum ++) {
      Gnum                finevertend;

      finevertend = finegrafptr->s.edgetax[fineedgenum];

      if ((finevertend < finevertnum) &&          /* If neighbor has same characteristics */
          (finehsumval == finehsumtax[finevertend]) &&
          (finedegrval == (finegrafptr->s.vendtax[finevertend] - finegrafptr->s.verttax[finevertend]))) {
        Gnum                finematenum;
        Gnum                coarvertend;

        for (finematenum = 0, coarvertend = finecoartax[finevertend]; /* Search if end vertex has already been compressed with some mate */
             (finematenum < finematenbr) && (finematetab[finematenum].coarvertend != coarvertend); finematenum ++) ;

        if (finematenum == finematenbr) {         /* If new slot needed   */
          finematetab[finematenum].coarvertend = coarvertend; /* Build it */
          finematetab[finematenum].finevertend = finevertend;
          finematenbr ++;
        }
      }
    }

    finecoartax[finevertnum] = coarvertnbr ++;    /* Assume no mate found */

    if (finematenbr > 0) {                        /* If potential mates exist */
      Gnum                fineedgenum;            /* Current edge number      */
      Gnum                finehashnum;

      for (fineedgenum = finegrafptr->s.verttax[finevertnum]; /* For all edges, including halo edges */
           fineedgenum < finegrafptr->s.vendtax[finevertnum]; fineedgenum ++) {
        Gnum                finevertend;

        finevertend = finegrafptr->s.edgetax[fineedgenum]; /* Add end vertex to hash table */

        for (finehashnum = (finevertend * HGRAPHORDERCPHASHPRIME) & finehashmsk; /* Search for empty slot in hash table */
             finehashtab[finehashnum].vertnum == finevertnum; finehashnum = (finehashnum + 1) & finehashmsk) ;
        finehashtab[finehashnum].vertnum = finevertnum;
        finehashtab[finehashnum].vertend = finevertend;
      }
      for (finehashnum = (finevertnum * HGRAPHORDERCPHASHPRIME) & finehashmsk;  /* Add current vertex to hash table */
           finehashtab[finehashnum].vertnum == finevertnum; finehashnum = (finehashnum + 1) & finehashmsk) ;
      finehashtab[finehashnum].vertnum = finevertnum;
      finehashtab[finehashnum].vertend = finevertnum;

      finematenbr --;                             /* Point to first potential mate */
      do {                                        /* For all potential mates       */
        Gnum                fineedgenum;          /* Current edge number           */
        Gnum                fineedgennd;

        for (fineedgenum = finegrafptr->s.verttax[finematetab[finematenbr].finevertend], /* For all edges, including halo edges */
             fineedgennd = finegrafptr->s.vendtax[finematetab[finematenbr].finevertend];
             fineedgenum < fineedgennd; fineedgenum ++) {
          Gnum                finevertend;

          finevertend = finegrafptr->s.edgetax[fineedgenum];

          for (finehashnum = (finevertend * HGRAPHORDERCPHASHPRIME) & finehashmsk; ;
               finehashnum = (finehashnum + 1) & finehashmsk) {
            if (finehashtab[finehashnum].vertnum != finevertnum) /* If mate neighbor not found in hash table  */
              goto loop_failed;                   /* Vertex cannot be merged to mate, so skip to next mate    */
            if (finehashtab[finehashnum].vertend == finevertend) /* Else if mate neighbor found in hash table */
              break;                              /* Skip to next mate neighbor to find                       */
          }
        }
        coarvertnbr --;                           /* Same adjacency structure          */
        finecoartax[finevertnum] = finematetab[finematenbr].coarvertend; /* Get number */
        coaredgenbr -= finedegrval + 1;           /* Remove exceeding edges            */
        break;
loop_failed: ;
      } while (finematenbr -- > 0);
    }
  }

  coargrafdat.vnohnnd = coarvertnbr;              /* Save number of non-halo vertices */

  memFree (finehsumtax + finegrafptr->s.baseval);

  if ((double) (coarvertnbr - coargrafdat.s.baseval) > ((double) finegrafptr->vnohnbr * paraptr->comprat)) { /* If graph needs not be compressed */
    memFree (finehashtab);
    memFree (finecoartax + finegrafptr->s.baseval);
    return (hgraphOrderSt (finegrafptr, fineordeptr, ordenum, cblkptr, paraptr->stratunc));
  }

  for ( ; finevertnum < finegrafptr->s.vertnnd; finevertnum ++) /* For all halo vertices */
    finecoartax[finevertnum] = coarvertnbr ++;    /* Halo vertices are never compressed  */

  coargrafdat.s.flagval = HGRAPHFREETABS | GRAPHVERTGROUP;
  coargrafdat.s.vertnbr = coarvertnbr - coargrafdat.s.baseval;
  coargrafdat.s.vertnnd = coarvertnbr;
  coargrafdat.s.velosum = finegrafptr->s.velosum;
  coargrafdat.s.degrmax = finegrafptr->s.degrmax;
  coargrafdat.vnohnbr   = coargrafdat.vnohnnd - coargrafdat.s.baseval;
  coargrafdat.vnlosum   = finegrafptr->vnlosum;

  if (finegrafptr->s.velotax == NULL) {
    if (finegrafptr->s.vertnbr == finegrafptr->vnohnbr) { /* If no halo present */
      dataptr = memAllocGroup ((void **) (void *)
                               &coargrafdat.s.verttax, (size_t) ((coarvertnbr + 1)   * sizeof (Gnum)),
                               &coargrafdat.s.velotax, (size_t) (coarvertnbr         * sizeof (Gnum)), NULL);
      coargrafdat.vnhdtax = coargrafdat.s.verttax + 1;
    }
    else {
      dataptr = memAllocGroup ((void **) (void *)
                               &coargrafdat.s.verttax, (size_t) ((coarvertnbr + 1)   * sizeof (Gnum)),
                               &coargrafdat.vnhdtax,   (size_t) (coargrafdat.vnohnbr * sizeof (Gnum)),
                               &coargrafdat.s.velotax, (size_t) (coarvertnbr         * sizeof (Gnum)), NULL);
    }
    coarvsiztax = coargrafdat.s.velotax;
  }
  else {
    if (finegrafptr->s.vertnbr == finegrafptr->vnohnbr) { /* If no halo present */
      dataptr = memAllocGroup ((void **) (void *)
                               &coargrafdat.s.verttax, (size_t) ((coarvertnbr + 1)   * sizeof (Gnum)),
                               &coargrafdat.s.velotax, (size_t) (coarvertnbr         * sizeof (Gnum)),
                               &coarvsiztax,           (size_t) (coarvertnbr         * sizeof (Gnum)), NULL);
      coargrafdat.vnhdtax = coargrafdat.s.verttax + 1;
    }
    else {
      dataptr = memAllocGroup ((void **) (void *)
                               &coargrafdat.s.verttax, (size_t) ((coarvertnbr + 1)   * sizeof (Gnum)),
                               &coargrafdat.vnhdtax,   (size_t) (coargrafdat.vnohnbr * sizeof (Gnum)),
                               &coargrafdat.s.velotax, (size_t) (coarvertnbr         * sizeof (Gnum)),
                               &coarvsiztax,           (size_t) (coarvertnbr         * sizeof (Gnum)), NULL);
    }
  }
  if (dataptr != NULL) {
    dataptr               =
    coargrafdat.s.edgetax = (Gnum *) memAlloc (coaredgenbr * sizeof (Gnum));
  }
  if (dataptr == NULL) {
    errorPrint ("hgraphOrderCp: out of memory (2)");
    hgraphExit (&coargrafdat);
    memFree    (finehashtab);
    memFree    (finecoartax + finegrafptr->s.baseval);
    return     (1);
  }
  coargrafdat.s.verttax -= coargrafdat.s.baseval;
  coargrafdat.s.vendtax  = coargrafdat.s.verttax + 1; /* Use compact representation of arrays */
  coargrafdat.s.velotax -= coargrafdat.s.baseval;
  coargrafdat.s.edgetax -= coargrafdat.s.baseval;
  coargrafdat.vnhdtax   -= coargrafdat.s.baseval;
  coarvsiztax           -= coargrafdat.s.baseval;

  memSet (finehashtab, ~0, (finehashmsk + 1) * sizeof (HgraphOrderCpHash));

  for (finevertnum = finegrafptr->s.baseval, coarvertnum = coaredgenum = coargrafdat.s.baseval; /* For all non-halo vertices */
       finevertnum < finegrafptr->vnohnnd; finevertnum ++) {
    Gnum                fineedgenum;              /* Current edge number */

    if (finecoartax[finevertnum] != coarvertnum)
      continue;

    coargrafdat.s.verttax[coarvertnum] = coaredgenum;
    coarvsiztax[coarvertnum] = 1;                 /* Fill coargrafdat.s.velotax if finegrafptr has no vertex loads */

    for (fineedgenum = finegrafptr->s.verttax[finevertnum]; /* For all non-halo edges of vertex */
         fineedgenum < finegrafptr->vnhdtax[finevertnum]; fineedgenum ++) {
      Gnum                finevertend;
      Gnum                finehashnum;

      finevertend = finegrafptr->s.edgetax[fineedgenum];
      if (finecoartax[finevertend] == coarvertnum) { /* If neighbor is merged into us, merge load but do not write edge */
        coarvsiztax[coarvertnum] ++;              /* Fill coargrafdat.s.velotax if finegrafptr has no vertex loads      */
        continue;
      }
      for (finehashnum = (finecoartax[finevertend] * HGRAPHORDERCPHASHPRIME) & finehashmsk; ; /* Search for end vertex in hash table */
           finehashnum = (finehashnum + 1) & finehashmsk) {
        if (finehashtab[finehashnum].vertnum != coarvertnum) {
          finehashtab[finehashnum].vertnum = coarvertnum;
          finehashtab[finehashnum].vertend = finecoartax[finevertend];
          coargrafdat.s.edgetax[coaredgenum ++] = finecoartax[finevertend];
          break;
        }
        if (finehashtab[finehashnum].vertend == finecoartax[finevertend])
          break;                                  /* If edge already exists */
      }
    }
    coargrafdat.vnhdtax[coarvertnum] = coaredgenum; /* Set end of non-halo edge sub-array */

    for ( ; fineedgenum < finegrafptr->s.vendtax[finevertnum]; fineedgenum ++) { /* For edges linking to halo vertices */
      Gnum                finevertend;

      finevertend = finegrafptr->s.edgetax[fineedgenum];
      coargrafdat.s.edgetax[coaredgenum ++] = finecoartax[finevertend]; /* Halo vertices are always defined and unique */
    }
    coarvertnum ++;
  }
  for (coarenohnnd = coaredgenum; finevertnum < finegrafptr->s.vertnnd; finevertnum ++) { /* For all halo vertices */
    Gnum                fineedgenum;              /* Current edge number */

    coargrafdat.s.verttax[coarvertnum] = coaredgenum;
    coarvsiztax[coarvertnum] = 1;                 /* Fill coargrafdat.s.velotax if finegrafptr has no vertex loads */

    for (fineedgenum = finegrafptr->s.verttax[finevertnum]; /* For all edges of halo vertex */
         fineedgenum < finegrafptr->s.vendtax[finevertnum]; fineedgenum ++) {
      Gnum                finevertend;

      finevertend = finegrafptr->s.edgetax[fineedgenum];
      coargrafdat.s.edgetax[coaredgenum ++] = finecoartax[finevertend];
    }
    coarvertnum ++;
  }
  coargrafdat.s.verttax[coarvertnum] = coaredgenum; /* Set end of compact vertex array */
  coargrafdat.s.edlosum =
  coargrafdat.s.edgenbr = coaredgenum - coargrafdat.s.baseval;
  coargrafdat.enohsum   =
  coargrafdat.enohnbr   = coargrafdat.s.edgenbr - 2 * (coaredgenum - coarenohnnd);

  if (finegrafptr->s.velotax != NULL) {           /* If fine graph has vertex loads */
    memSet (coargrafdat.s.velotax + coargrafdat.s.baseval, 0, coargrafdat.s.vertnbr * sizeof (Gnum));

    for (finevertnum = finegrafptr->s.baseval; finevertnum < finegrafptr->s.vertnnd; finevertnum ++) /* Compute vertex loads for compressed graph */
      coargrafdat.s.velotax[finecoartax[finevertnum]] += finegrafptr->s.velotax[finevertnum];
  }

  memFree (finehashtab);

  coargrafdat.s.edgetax = (Gnum *) memRealloc (coargrafdat.s.edgetax + coargrafdat.s.baseval, coargrafdat.s.edgenbr * sizeof (Gnum)) - coargrafdat.s.baseval;

#ifdef SCOTCH_DEBUG_ORDER2
  if (hgraphCheck (&coargrafdat) != 0) {
    errorPrint ("hgraphOrderCp: internal error (1)");
    hgraphExit (&coargrafdat);
    memFree    (finecoartax + finegrafptr->s.baseval);
    return     (1);
  }
#endif /* SCOTCH_DEBUG_ORDER2 */

  if ((coarperitab = memAlloc (coargrafdat.s.vertnbr * sizeof (Gnum))) == NULL) {
    errorPrint ("hgraphOrderCp: out of memory (3)");
    hgraphExit (&coargrafdat);
    memFree    (finecoartax + finegrafptr->s.baseval);
    return     (1);
  }
  orderInit (&coarordedat, coargrafdat.s.baseval, coargrafdat.s.vertnbr, coarperitab); /* Build ordering of compressed subgraph */
  if (hgraphOrderSt (&coargrafdat, &coarordedat, 0, &coarordedat.cblktre, paraptr->stratcpr) != 0) {
    memFree    (coarperitab);
    hgraphExit (&coargrafdat);
    memFree    (finecoartax + finegrafptr->s.baseval);
    return     (1);
  }

  *cblkptr = coarordedat.cblktre;                 /* Link sub-tree to ordering         */
  coarordedat.cblktre.cblktab = NULL;             /* Unlink sub-tree from sub-ordering */
  finevertnbr = hgraphOrderCpTree (coarordedat.peritab, /* Expand sub-tree             */
                                   coarvsiztax, cblkptr, 0);
#ifdef SCOTCH_DEBUG_ORDER2
  if (finevertnbr != finegrafptr->s.vertnbr) {
    errorPrint ("hgraphOrderCp: internal error (2)");
    memFree    (coarperitab);
    hgraphExit (&coargrafdat);
    memFree    (finecoartax + finegrafptr->s.baseval);
    return     (1);
  }
#endif /* SCOTCH_DEBUG_ORDER2 */
  fineordeptr->treenbr += coarordedat.treenbr - 1; /* Adjust number of tree nodes    */
  fineordeptr->cblknbr += coarordedat.cblknbr - 1; /* Adjust number of column blocks */

  coarvpostax = coargrafdat.s.verttax;            /* Re-cycle verttab (not velotab as may be merged with coarvsiztab) */
  coarperitax = coarperitab - coargrafdat.s.baseval;

  for (coarvertnum = coargrafdat.s.baseval, finevsizsum = 0; /* Compute initial indices for inverse permutation expansion */
       coarvertnum < coargrafdat.s.vertnnd; coarvertnum ++) {
    coarvpostax[coarperitax[coarvertnum]] = finevsizsum;
    finevsizsum += coarvsiztax[coarperitax[coarvertnum]];
  }
  for (finevertnum = finegrafptr->s.baseval; finevertnum < finegrafptr->s.vertnnd; finevertnum ++) /* Compute fine permutation */
    fineordeptr->peritab[coarvpostax[finecoartax[finevertnum]] ++] = finevertnum;

  memFree    (coarperitab);
  memFree    (finecoartax + finegrafptr->s.baseval);
  orderExit  (&coarordedat);
  hgraphExit (&coargrafdat);                      /* Free coarvsiztab as part of vertex group */

  return (0);
}

/* This routine turns the coarse elimination
** tree produced by the ordering of the coarse
** graph into a fine elimination tree, according
** to the cardinality of the coarse vertices.
** It returns:
** - !0  : overall number of fine vertices, in all cases.
*/

static
Gnum
hgraphOrderCpTree (
const Gnum * restrict const coarperitab,          /* Coarse inverse permutation              */
const Gnum * restrict const coarvsiztax,          /* Array of fine sizes of coarse vertices  */
OrderCblk * restrict const  coficblkptr,          /* Current coarse/fine column block cell   */
Gnum                        coarordenum)          /* Compressed vertex to start expansion at */
{
  Gnum                finevertnbr;                /* Number of fine vertices in subtree */

  finevertnbr = 0;                                /* No fine vertices yet */

  if (coficblkptr->cblktab == NULL) {             /* If leaf of column block tree */
    Gnum                coarvnumnum;

    for (coarvnumnum = coarordenum;
         coarvnumnum < coarordenum + coficblkptr->vnodnbr; coarvnumnum ++)
      finevertnbr += coarvsiztax[coarperitab[coarvnumnum]];   /* Sum-up fine vertices */
  }
  else {
    Gnum                coarvertnbr;              /* Number of coarse vertices in cell    */
    Gnum                coarvertsum;              /* Number of coarse vertices in subtree */
    Gnum                coficblknum;              /* Index in column block array          */

    for (coficblknum = 0, coarvertsum = coarordenum; /* Start at current coarse index */
         coficblknum < coficblkptr->cblknbr; coficblknum ++) {
      coarvertnbr  = coficblkptr->cblktab[coficblknum].vnodnbr; /* Save number of coarse vertices */
      finevertnbr += hgraphOrderCpTree (coarperitab, coarvsiztax, &coficblkptr->cblktab[coficblknum], coarvertsum);
      coarvertsum += coarvertnbr;                 /* Sum-up coarse vertices */
    }
  }
  coficblkptr->vnodnbr = finevertnbr;             /* Set number of fine vertices */

  return (finevertnbr);                           /* Return accumulated number */
}