File: OpenFTA_Report.txt

package info (click to toggle)
scram 0.16.2-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 8,016 kB
  • sloc: xml: 120,766; cpp: 23,966; python: 1,256; ansic: 100; makefile: 9
file content (101 lines) | stat: -rw-r--r-- 2,287 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
Minimal Cut Sets
================

Tree   : top.fta
Time   : Mon Apr 07 23:48:16 2014

Method : Algebraic

No. of primary events = 2
Minimal cut set order = 1 to 2

Order 1:
    1)  a
    2)  b

Order 2:


Qualitative Importance Analysis:

Order        Number
-----        ------
   1           2
   2           0
  ALL          2


Probabilities Analysis
======================

Tree   : top.fta
Time   : Mon Apr 07 23:48:49 2014

Number of primary events   = 2
Number of minimal cut sets = 2
Order of minimal cut sets  = 2

Unit time span         = 1.000000

Minimal cut set probabilities :

  1    a                               1.000000E-001
  2    b                               2.000000E-001


Probability of top level event (minimal cut sets up to order 2 used):

 1 term    +3.000000E-001   = 3.000000E-001 (upper bound)
 2 terms   -2.000000E-002   = 2.800000E-001 (lower bound)

Exact value : 2.800000E-001


Primary Event Analysis:

 Event          Failure contrib.    Importance

 a              1.000000E-001            35.71%
 b              2.000000E-001            71.43%


Monte Carlo Simulation
======================

Tree   : top.fta
Time   : Mon Apr 07 23:51:19 2014

Note: Only runs with at least one component failure are simulated

Number of primary events  = 2
Number of tests           = 10000
Unit Time span used       = 1.000000

Number of system failures = 10000

Probability of at least   = 2.800000E-001  ( exact )
one component failure

Probability of top event  = 2.800000E-001  ( +/- 2.800000E-003 )

Rank   Failure mode         Failures  Estimated Probability         Importance

  1    b                    6453      1.806840E-001 ( +/- 2.249256E-003 )  64.53%
  2    a                    2873      8.044400E-002 ( +/- 1.500810E-003 )  28.73%
  3    a b                  674       1.887200E-002 ( +/- 7.269223E-004 )   6.74%


Compressed:

Rank   Failure mode         Failures  Estimated Probability    Importance

  1    a                    3547      9.931600E-002 ( +/- 1.667588E-003 )  35.47%
  2    b                    7127      1.995560E-001 ( +/- 2.363804E-003 )  71.27%


Primary Event Analysis:

 Event          Failure contrib.    Importance

 a              9.931600E-002            35.47%
 b              1.995560E-001            71.27%