1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
|
#!/usr/bin/env python
#
# Copyright (C) 2014-2017 Olzhas Rakhimov
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
"""Generates a fault tree of various complexities.
The generated fault tree can be put into an XML file with the Open-PSA MEF
or the Aralia format file.
The resulting fault tree is topologically sorted.
This script helps create complex fault trees in a short time
to test other analysis tools,
for example, input dependent performance analysis.
The time complexity is approximately:
O(N) + O((N/Ratio)^2*exp(-NumArgs/Ratio)) + O(CommonG*exp(CommonB))
Where N is the number of basic events,
and Ratio is N / num_gate.
Note that generating a fault tree
with both the number of basic events and the number of gates contstrained
may change other factors that are set by the user.
However, if the number of gates are not set (constrained) by the user,
all the other factors set by the user are
guaranteed to be preserved and used as they are.
"""
# pylint: disable=too-many-lines
from __future__ import print_function, division, absolute_import
from collections import deque
import random
import sys
import argparse as ap
from fault_tree import BasicEvent, HouseEvent, Gate, CcfGroup, FaultTree
class FactorError(Exception):
"""Errors in configuring factors for the fault tree generation."""
pass
class Factors(object): # pylint: disable=too-many-instance-attributes
"""Collection of factors that determine the complexity of the fault tree.
This collection must be setup and updated
before the fault tree generation processes.
Attributes:
num_args: The average number of arguments for gates.
num_basic: The number of basic events.
num_house: The number of house events.
num_ccf: The number of ccf groups.
common_b: The percentage of common basic events per gate.
common_g: The percentage of common gates per gate.
parents_b: The average number of parents for common basic events.
parents_g: The average number of parents for common gates.
"""
# Constant configurations
__OPERATORS = ["and", "or", "atleast", "not", "xor"] # the order matters
def __init__(self):
"""Partial constructor."""
# Probabilistic factors
self.min_prob = 0
self.max_prob = 1
# Configurable graph factors
self.num_basic = None
self.num_house = None
self.num_ccf = None
self.common_b = None
self.common_g = None
self.num_args = None
self.parents_b = None
self.parents_g = None
self.__weights_g = None # should not be set directly
# Calculated factors
self.__norm_weights = [] # normalized weights
self.__cum_dist = [] # CDF from the weights of the gate types
self.__max_args = None # the upper bound for the number of arguments
self.__ratio = None # basic events to gates ratio per gate
self.__percent_basic = None # % of basic events in gate arguments
self.__percent_gate = None # % of gates in gate arguments
# Special case with the constrained number of gates
self.__num_gate = None # If set, all other factors get affected.
def set_min_max_prob(self, min_value, max_value):
"""Sets the probability boundaries for basic events.
Args:
min_value: The lower inclusive boundary.
max_value: The upper inclusive boundary.
Raises:
FactorError: Invalid values or setup.
"""
if min_value < 0 or min_value > 1:
raise FactorError("Min probability must be in [0, 1] range.")
if max_value < 0 or max_value > 1:
raise FactorError("Max probability must be in [0, 1] range.")
if min_value > max_value:
raise FactorError("Min probability > Max probability.")
self.min_prob = min_value
self.max_prob = max_value
def set_common_event_factors(self, common_b, common_g, parents_b,
parents_g):
"""Sets the factors for the number of common events.
Args:
common_b: The percentage of common basic events per gate.
common_g: The percentage of common gates per gate.
parents_b: The average number of parents for common basic events.
parents_g: The average number of parents for common gates.
Raises:
FactorError: Invalid values or setup.
"""
max_common = 0.9 # a practical limit (not a formal constraint)
if common_b <= 0 or common_b > max_common:
raise FactorError("common_b not in (0, " + str(max_common) + "].")
if common_g <= 0 or common_g > max_common:
raise FactorError("common_g not in (0, " + str(max_common) + "].")
max_parent = 100 # also a practical limit
if parents_b < 2 or parents_b > max_parent:
raise FactorError("parents_b not in [2, " + str(max_parent) + "].")
if parents_g < 2 or parents_g > max_parent:
raise FactorError("parents_g not in [2, " + str(max_parent) + "].")
self.common_b = common_b
self.common_g = common_g
self.parents_b = parents_b
self.parents_g = parents_g
def set_num_factors(self, num_args, num_basic, num_house=0, num_ccf=0):
"""Sets the size factors.
Args:
num_args: The average number of arguments for gates.
num_basic: The number of basic events.
num_house: The number of house events.
num_ccf: The number of ccf groups.
Raises:
FactorError: Invalid values or setup.
"""
if num_args < 2:
raise FactorError("avg. # of gate arguments can't be less than 2.")
if num_basic < 1:
raise FactorError("# of basic events must be more than 0.")
if num_house < 0:
raise FactorError("# of house events can't be negative.")
if num_ccf < 0:
raise FactorError("# of CCF groups can't be negative.")
if num_house >= num_basic:
raise FactorError("Too many house events.")
if num_ccf > num_basic / num_args:
raise FactorError("Too many CCF groups.")
self.num_args = num_args
self.num_basic = num_basic
self.num_house = num_house
self.num_ccf = num_ccf
@staticmethod
def __calculate_max_args(num_args, weights):
"""Calculates the maximum number of arguments for sampling.
The result may have a fractional part
that must be adjusted in sampling accordingly.
Args:
num_args: The average number of arguments for gates.
weights: Normalized weights for gate types.
Returns:
The upper bound for sampling in symmetric distributions.
"""
# Min numbers for AND, OR, K/N, NOT, XOR types.
min_args = [2, 2, 3, 1, 2]
# Note that max and min numbers are the same for NOT and XOR.
const_args = min_args[3:]
const_weights = weights[3:]
const_contrib = [x * y for x, y in zip(const_args, const_weights)]
# AND, OR, K/N gate types can have the varying number of args.
var_args = min_args[:3]
var_weights = weights[:3]
var_contrib = [x * y for x, y in zip(var_args, var_weights)]
# AND, OR, K/N gate types can have the varying number of arguments.
# Since the distribution is symmetric, the average is (max + min) / 2.
return ((2 * num_args - sum(var_contrib) - 2 * sum(const_contrib)) /
sum(var_weights))
def calculate(self):
"""Calculates any derived factors from the setup.
This function must be called after all public factors are initialized.
"""
self.__max_args = Factors.__calculate_max_args(self.num_args,
self.__norm_weights)
g_factor = 1 - self.common_g + self.common_g / self.parents_g
self.__ratio = self.num_args * g_factor - 1
self.__percent_basic = self.__ratio / (1 + self.__ratio)
self.__percent_gate = 1 / (1 + self.__ratio)
def get_gate_weights(self):
"""Provides weights for gate types.
Returns:
Expected to return weights from the arguments.
"""
assert self.__weights_g is not None
return self.__weights_g
def set_gate_weights(self, weights):
"""Updates gate type weights.
Args:
weights: Weights of gate types.
The weights must have the same order as in OPERATORS list.
If weights for some operators are missing,
they are assumed to be 0.
Raises:
FactorError: Invalid weight values or setup.
"""
if not weights:
raise FactorError("No weights are provided")
if [i for i in weights if i < 0]:
raise FactorError("Weights cannot be negative")
if len(weights) > len(Factors.__OPERATORS):
raise FactorError("Too many weights are provided")
if sum(weights) == 0:
raise FactorError("At least one non-zero weight is needed")
if len(weights) > 3 and not sum(weights[:3]):
raise FactorError("Cannot work with only XOR or NOT gates")
self.__weights_g = weights[:]
for _ in range(len(Factors.__OPERATORS) - len(weights)):
self.__weights_g.append(0) # padding for missing weights
self.__norm_weights = [
x / sum(self.__weights_g) for x in self.__weights_g
]
self.__cum_dist = self.__norm_weights[:]
self.__cum_dist.insert(0, 0)
for i in range(1, len(self.__cum_dist)):
self.__cum_dist[i] += self.__cum_dist[i - 1]
def get_random_operator(self):
"""Samples the gate operator.
Returns:
A randomly chosen gate operator.
"""
r_num = random.random()
bin_num = 1
while self.__cum_dist[bin_num] <= r_num:
bin_num += 1
return Factors.__OPERATORS[bin_num - 1]
def get_num_args(self, gate):
"""Randomly selects the number of arguments for the given gate type.
This function has a side effect.
It sets k_num for the K/N type of gates
depending on the number of arguments.
Args:
gate: The parent gate for arguments.
Returns:
Random number of arguments.
"""
if gate.operator == "not":
return 1
elif gate.operator == "xor":
return 2
max_args = int(self.__max_args)
# Dealing with the fractional part.
if random.random() < (self.__max_args - max_args):
max_args += 1
if gate.operator == "atleast":
if max_args < 3:
max_args = 3
num_args = random.randint(3, max_args)
gate.k_num = random.randint(2, num_args - 1)
return num_args
return random.randint(2, max_args)
def get_percent_gate(self):
"""Returns the percentage of gates that should be in arguments."""
return self.__percent_gate
def get_num_gate(self):
"""Approximates the number of gates in the resulting fault tree.
This is an estimate of the number of gates
needed to initialize the fault tree
with the given number of basic events
and fault tree properties.
Returns:
The number of gates needed for the given basic events.
"""
# Special case of constrained gates
if self.__num_gate:
return self.__num_gate
b_factor = 1 - self.common_b + self.common_b / self.parents_b
return int(self.num_basic /
(self.__percent_basic * self.num_args * b_factor))
def get_num_common_basic(self, num_gate):
"""Estimates the number of common basic events.
These common basic events must be chosen
from the total number of basic events
in order to ensure the correct average number of parents.
Args:
num_gate: The total number of gates in the future fault tree
Returns:
The estimated number of common basic events.
"""
return int(self.common_b * self.__percent_basic * self.num_args *
num_gate / self.parents_b)
def get_num_common_gate(self, num_gate):
"""Estimates the number of common gates.
These common gates must be chosen
from the total number of gates
in order to ensure the correct average number of parents.
Args:
num_gate: The total number of gates in the future fault tree
Returns:
The estimated number of common gates.
"""
return int(self.common_g * self.__percent_gate * self.num_args *
num_gate / self.parents_g)
def constrain_num_gate(self, num_gate):
"""Constrains the number of gates.
The number of parents and the ratios for common nodes are manipulated.
Args:
num_gate: The total number of gates in the future fault tree
"""
if num_gate < 1:
raise FactorError("# of gates can't be less than 1.")
if num_gate * self.num_args <= self.num_basic:
raise FactorError("Not enough gates and avg. # of args "
"to achieve the # of basic events")
self.__num_gate = num_gate
# Calculate the ratios
alpha = self.__num_gate / self.num_basic
common = max(self.common_g, self.common_b)
min_common = 1 - (1 + alpha) / self.num_args / alpha
if common < min_common:
common = round(min_common + 0.05, 1)
elif common > 2 * min_common: # Really hope it does not happen
common = 2 * min_common
assert common < 1 # Very brittle configuration here
self.common_g = common
self.common_b = common
parents = 1 / (1 - min_common / common)
assert parents > 2 # This is brittle as well
self.parents_g = parents
self.parents_b = parents
class GeneratorFaultTree(FaultTree):
"""Specialization of a fault tree for generation purposes.
The construction of fault tree members are handled through this object.
It is assumed that no removal is going to happen after construction.
Args:
factors: The fault tree generation factors.
"""
def __init__(self, name, factors):
"""Initializes an empty fault tree.
Args:
name: The name of the system described by the fault tree container.
factors: Fully configured generation factors.
"""
super(GeneratorFaultTree, self).__init__(name)
self.factors = factors
def construct_top_gate(self, root_name):
"""Constructs and assigns a new gate suitable for being a root.
Args:
root_name: Unique name for the root gate.
"""
assert not self.top_gate and not self.top_gates
operator = self.factors.get_random_operator()
while operator == "xor" or operator == "not":
operator = self.factors.get_random_operator()
self.top_gate = Gate(root_name, operator)
self.gates.append(self.top_gate)
def construct_gate(self):
"""Constructs a new gate.
Returns:
A fully initialized gate with random attributes.
"""
gate = Gate("G" + str(len(self.gates) + 1),
self.factors.get_random_operator())
self.gates.append(gate)
return gate
def construct_basic_event(self):
"""Constructs a basic event with a unique identifier.
Returns:
A fully initialized basic event with a random probability.
"""
basic_event = BasicEvent("B" + str(len(self.basic_events) + 1),
random.uniform(self.factors.min_prob,
self.factors.max_prob))
self.basic_events.append(basic_event)
return basic_event
def construct_house_event(self):
"""Constructs a house event with a unique identifier.
Returns:
A fully initialized house event with a random state.
"""
house_event = HouseEvent("H" + str(len(self.house_events) + 1),
random.choice(["true", "false"]))
self.house_events.append(house_event)
return house_event
def construct_ccf_group(self, members):
"""Constructs a unique CCF group with factors.
Args:
members: A list of member basic events.
Returns:
A fully initialized CCF group with random factors.
"""
assert len(members) > 1
ccf_group = CcfGroup("CCF" + str(len(self.ccf_groups) + 1))
self.ccf_groups.append(ccf_group)
ccf_group.members = members
ccf_group.prob = random.uniform(self.factors.min_prob,
self.factors.max_prob)
ccf_group.model = "MGL"
levels = random.randint(2, len(members))
ccf_group.factors = [random.uniform(0.1, 1) for _ in range(levels - 1)]
return ccf_group
def candidate_gates(common_gate):
"""Lazy generator of candidates for common gates.
Args:
common_gate: A list of common gates.
Yields:
A next gate candidate from common gates container.
"""
orphans = [x for x in common_gate if not x.parents]
random.shuffle(orphans)
for i in orphans:
yield i
single_parent = [x for x in common_gate if len(x.parents) == 1]
random.shuffle(single_parent)
for i in single_parent:
yield i
multi_parent = [x for x in common_gate if len(x.parents) > 1]
random.shuffle(multi_parent)
for i in multi_parent:
yield i
def correct_for_exhaustion(gates_queue, common_gate, fault_tree):
"""Corrects the generation for queue exhaustion.
Corner case when not enough new basic events initialized,
but there are no more intermediate gates to use
due to a big ratio or just random accident.
Args:
gates_queue: A deque of gates to be initialized.
common_gate: A list of common gates.
fault_tree: The fault tree container of all events and constructs.
"""
if gates_queue:
return
if len(fault_tree.basic_events) < fault_tree.factors.num_basic:
# Initialize one more gate
# by randomly choosing places in the fault tree.
random_gate = random.choice(fault_tree.gates)
while (random_gate.operator == "not" or random_gate.operator == "xor" or
random_gate in common_gate):
random_gate = random.choice(fault_tree.gates)
new_gate = fault_tree.construct_gate()
random_gate.add_argument(new_gate)
gates_queue.append(new_gate)
def choose_basic_event(s_common, common_basic, fault_tree):
"""Creates a new basic event or uses a common one for gate arguments.
Args:
s_common: Sampled factor to choose common basic events.
common_basic: A list of common basic events to choose from.
fault_tree: The fault tree container of all events and constructs.
Returns:
Basic event argument for a gate.
"""
if s_common < fault_tree.factors.common_b and common_basic:
orphans = [x for x in common_basic if not x.parents]
if orphans:
return random.choice(orphans)
single_parent = [x for x in common_basic if len(x.parents) == 1]
if single_parent:
return random.choice(single_parent)
return random.choice(common_basic)
else:
return fault_tree.construct_basic_event()
def init_gates(gates_queue, common_basic, common_gate, fault_tree):
"""Initializes gates and other basic events.
Args:
gates_queue: A deque of gates to be initialized.
common_basic: A list of common basic events.
common_gate: A list of common gates.
fault_tree: The fault tree container of all events and constructs.
"""
# Get an intermediate gate to initialize breadth-first
gate = gates_queue.popleft()
num_arguments = fault_tree.factors.get_num_args(gate)
ancestors = None # needed for cycle prevention
max_tries = len(common_gate) # the number of maximum tries
num_tries = 0 # the number of tries to get a common gate
# pylint: disable=too-many-nested-blocks
# This code is both hot and coupled for performance reasons.
# There may be a better solution than the current approach.
while gate.num_arguments() < num_arguments:
s_percent = random.random() # sample percentage of gates
s_common = random.random() # sample the reuse frequency
# Case when the number of basic events is already satisfied
if len(fault_tree.basic_events) == fault_tree.factors.num_basic:
s_common = 0 # use only common nodes
if s_percent < fault_tree.factors.get_percent_gate():
# Create a new gate or use a common one
if s_common < fault_tree.factors.common_g and num_tries < max_tries:
# Lazy evaluation of ancestors
if not ancestors:
ancestors = gate.get_ancestors()
for random_gate in candidate_gates(common_gate):
num_tries += 1
if num_tries >= max_tries:
break
if random_gate in gate.g_arguments or random_gate is gate:
continue
if (not random_gate.g_arguments or
random_gate not in ancestors):
if not random_gate.parents:
gates_queue.append(random_gate)
gate.add_argument(random_gate)
break
else:
new_gate = fault_tree.construct_gate()
gate.add_argument(new_gate)
gates_queue.append(new_gate)
else:
gate.add_argument(
choose_basic_event(s_common, common_basic, fault_tree))
correct_for_exhaustion(gates_queue, common_gate, fault_tree)
def distribute_house_events(fault_tree):
"""Distributes house events to already initialized gates.
Args:
fault_tree: The fault tree container of all events and constructs.
"""
while len(fault_tree.house_events) < fault_tree.factors.num_house:
target_gate = random.choice(fault_tree.gates)
if (target_gate is not fault_tree.top_gate and
target_gate.operator != "xor" and
target_gate.operator != "not"):
target_gate.add_argument(fault_tree.construct_house_event())
def generate_ccf_groups(fault_tree):
"""Creates CCF groups from the existing basic events.
Args:
fault_tree: The fault tree container of all events and constructs.
"""
if fault_tree.factors.num_ccf:
members = fault_tree.basic_events[:]
random.shuffle(members)
first_mem = 0
last_mem = 0
while len(fault_tree.ccf_groups) < fault_tree.factors.num_ccf:
max_args = int(2 * fault_tree.factors.num_args - 2)
group_size = random.randint(2, max_args)
last_mem = first_mem + group_size
if last_mem > len(members):
break
fault_tree.construct_ccf_group(members[first_mem:last_mem])
first_mem = last_mem
fault_tree.non_ccf_events = members[first_mem:]
def generate_fault_tree(ft_name, root_name, factors):
"""Generates a fault tree of specified complexity.
The Factors class attributes are used as parameters for complexity.
Args:
ft_name: The name of the fault tree.
root_name: The name for the root gate of the fault tree.
factors: Factors for fault tree generation.
Returns:
Top gate of the created fault tree.
"""
fault_tree = GeneratorFaultTree(ft_name, factors)
fault_tree.construct_top_gate(root_name)
# Estimating the parameters
num_gate = factors.get_num_gate()
num_common_basic = factors.get_num_common_basic(num_gate)
num_common_gate = factors.get_num_common_gate(num_gate)
common_basic = [
fault_tree.construct_basic_event() for _ in range(num_common_basic)
]
common_gate = [fault_tree.construct_gate() for _ in range(num_common_gate)]
# Container for not yet initialized gates
# A deque is used to traverse the tree breadth-first
gates_queue = deque()
gates_queue.append(fault_tree.top_gate)
while gates_queue:
init_gates(gates_queue, common_basic, common_gate, fault_tree)
assert (not [x for x in fault_tree.basic_events if x.is_orphan()])
assert (not [
x for x in fault_tree.gates
if x.is_orphan() and x is not fault_tree.top_gate
])
distribute_house_events(fault_tree)
generate_ccf_groups(fault_tree)
return fault_tree
def write_info(fault_tree, tree_file, seed):
"""Writes the information about the setup for fault tree generation.
Args:
fault_tree: A full, valid, well-formed fault tree.
tree_file: A file open for writing.
seed: The seed of the pseudo-random number generator.
"""
factors = fault_tree.factors
tree_file.write("<?xml version=\"1.0\"?>\n")
tree_file.write(
"<!--\nThis is a description of the auto-generated fault tree\n"
"with the following parameters:\n\n"
"The output file name: " + tree_file.name + "\n"
"The fault tree name: " + fault_tree.name + "\n"
"The root gate name: " + fault_tree.top_gate.name + "\n\n"
"The seed of the random number generator: " + str(seed) + "\n"
"The number of basic events: " + str(factors.num_basic) + "\n"
"The number of house events: " + str(factors.num_house) + "\n"
"The number of CCF groups: " + str(factors.num_ccf) + "\n"
"The average number of gate arguments: " + str(factors.num_args) + "\n"
"The weights of gate types [AND, OR, K/N, NOT, XOR]: " +
str(factors.get_gate_weights()) + "\n"
"Percentage of common basic events per gate: " + str(factors.common_b) +
"\n"
"Percentage of common gates per gate: " + str(factors.common_g) + "\n"
"The avg. number of parents for common basic events: " + str(
factors.parents_b) + "\n"
"The avg. number of parents for common gates: " + str(
factors.parents_g) + "\n"
"Maximum probability for basic events: " + str(factors.max_prob) + "\n"
"Minimum probability for basic events: " + str(factors.min_prob) + "\n"
"-->\n")
def get_size_summary(fault_tree):
"""Gathers information about the size of the fault tree.
Args:
fault_tree: A full, valid, well-formed fault tree.
Returns:
A text snippet to be embedded in a XML summary.
"""
and_gates = [x for x in fault_tree.gates if x.operator == "and"]
or_gates = [x for x in fault_tree.gates if x.operator == "or"]
atleast_gates = [x for x in fault_tree.gates if x.operator == "atleast"]
not_gates = [x for x in fault_tree.gates if x.operator == "not"]
xor_gates = [x for x in fault_tree.gates if x.operator == "xor"]
return (
"The number of basic events: %d" % len(fault_tree.basic_events) + "\n"
"The number of house events: %d" % len(fault_tree.house_events) + "\n"
"The number of CCF groups: %d" % len(fault_tree.ccf_groups) + "\n"
"The number of gates: %d" % len(fault_tree.gates) + "\n"
" AND gates: %d" % len(and_gates) + "\n"
" OR gates: %d" % len(or_gates) + "\n"
" K/N gates: %d" % len(atleast_gates) + "\n"
" NOT gates: %d" % len(not_gates) + "\n"
" XOR gates: %d" % len(xor_gates) + "\n")
def calculate_complexity_factors(fault_tree):
"""Computes complexity factors of the generated fault tree.
Args:
fault_tree: A full, valid, well-formed fault tree.
Returns:
frac_b: fraction of basic events in arguments per gate
common_b: fraction of common basic events in basic events per gate
common_g: fraction of common gates in gates per gate
"""
frac_b = 0
common_b = 0
common_g = 0
for gate in fault_tree.gates:
num_b_arguments = len(gate.b_arguments)
num_g_arguments = len(gate.g_arguments)
frac_b += num_b_arguments / (num_g_arguments + num_b_arguments)
if gate.b_arguments:
num_common_b = len([x for x in gate.b_arguments if x.is_common()])
common_b += num_common_b / num_b_arguments
if gate.g_arguments:
num_common_g = len([x for x in gate.g_arguments if x.is_common()])
common_g += num_common_g / num_g_arguments
common_b /= len([x for x in fault_tree.gates if x.b_arguments])
common_g /= len([x for x in fault_tree.gates if x.g_arguments])
frac_b /= len(fault_tree.gates)
return frac_b, common_b, common_g
def get_complexity_summary(fault_tree):
"""Gathers information about the complexity factors of the fault tree.
Args:
fault_tree: A full, valid, well-formed fault tree.
Returns:
A text snippet to be embedded in a XML summary.
"""
frac_b, common_b, common_g = calculate_complexity_factors(fault_tree)
shared_b = [x for x in fault_tree.basic_events if x.is_common()]
shared_g = [x for x in fault_tree.gates if x.is_common()]
summary_txt = (
"Basic events to gates ratio: %f" %
(len(fault_tree.basic_events) / len(fault_tree.gates)) + "\n"
"The average number of gate arguments: %f" %
(sum(x.num_arguments()
for x in fault_tree.gates) / len(fault_tree.gates)) + "\n"
"The number of common basic events: %d" % len(shared_b) + "\n"
"The number of common gates: %d" % len(shared_g) + "\n"
"Percentage of common basic events per gate: %f" % common_b + "\n"
"Percentage of common gates per gate: %f" % common_g + "\n"
"Percentage of arguments that are basic events per gate: %f" % frac_b +
"\n")
if shared_b:
summary_txt += (
"The avg. number of parents for common basic events: %f" %
(sum(x.num_parents() for x in shared_b) / len(shared_b)) + "\n")
if shared_g:
summary_txt += (
"The avg. number of parents for common gates: %f" %
(sum(x.num_parents() for x in shared_g) / len(shared_g)) + "\n")
return summary_txt
def write_summary(fault_tree, tree_file):
"""Writes the summary of the generated fault tree.
Args:
fault_tree: A full, valid, well-formed fault tree.
tree_file: A file open for writing.
"""
tree_file.write(
"<!--\nThe generated fault tree has the following metrics:\n\n")
tree_file.write(get_size_summary(fault_tree))
tree_file.write(get_complexity_summary(fault_tree))
tree_file.write("-->\n\n")
def manage_cmd_args(argv=None):
"""Manages command-line description and arguments.
Args:
argv: An optional list containing the command-line arguments.
If None, the command-line arguments from sys will be used.
Returns:
Arguments that are collected from the command line.
Raises:
ArgumentTypeError: There are problems with the arguments.
"""
# #lizard forgives the function length
parser = ap.ArgumentParser(
description="Complex-Fault-Tree Generator",
formatter_class=ap.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"--ft-name",
type=str,
help="name for the fault tree",
metavar="NCNAME",
default="Autogenerated")
parser.add_argument(
"--root",
type=str,
help="name for the root gate",
default="root",
metavar="NCNAME")
parser.add_argument(
"--seed",
type=int,
default=123,
metavar="int",
help="seed for the PRNG")
parser.add_argument(
"-b",
"--num-basic",
type=int,
help="# of basic events",
default=100,
metavar="int")
parser.add_argument(
"-a",
"--num-args",
type=float,
default=3.0,
help="avg. # of gate arguments",
metavar="float")
parser.add_argument(
"--weights-g",
type=str,
nargs="+",
metavar="float",
help="weights for [AND, OR, K/N, NOT, XOR] gates",
default=[1, 1, 0, 0, 0])
parser.add_argument(
"--common-b",
type=float,
default=0.1,
metavar="float",
help="avg. %% of common basic events per gate")
parser.add_argument(
"--common-g",
type=float,
default=0.1,
metavar="float",
help="avg. %% of common gates per gate")
parser.add_argument(
"--parents-b",
type=float,
default=2,
metavar="float",
help="avg. # of parents for common basic events")
parser.add_argument(
"--parents-g",
type=float,
default=2,
metavar="float",
help="avg. # of parents for common gates")
parser.add_argument(
"-g",
"--num-gate",
type=int,
default=0,
metavar="int",
help="# of gates (discards parents-b/g and common-b/g)")
parser.add_argument(
"--max-prob",
type=float,
default=0.1,
metavar="float",
help="maximum probability for basic events")
parser.add_argument(
"--min-prob",
type=float,
default=0.01,
metavar="float",
help="minimum probability for basic events")
parser.add_argument(
"--num-house",
type=int,
help="# of house events",
default=0,
metavar="int")
parser.add_argument(
"--num-ccf", type=int, help="# of ccf groups", default=0, metavar="int")
parser.add_argument(
"-o",
"--out",
type=str,
default="fault_tree.xml",
metavar="path",
help="a file to write the fault tree")
parser.add_argument(
"--aralia",
action="store_true",
help="apply the Aralia format to the output")
parser.add_argument(
"--nest",
type=int,
default=0,
metavar="int",
help="nestedness of Boolean formulae in the XML output")
args = parser.parse_args(argv)
if args.nest < 0:
raise ap.ArgumentTypeError("The nesting factor cannot be negative")
if args.aralia:
if args.out == "fault_tree.xml":
args.out = "fault_tree.txt"
return args
def setup_factors(args):
"""Configures the fault generation by assigning factors.
Args:
args: Command-line arguments with values for factors.
Returns:
Fully initialized Factors object.
Raises:
ArgumentTypeError: Problems with the arguments.
FactorError: Invalid setup for factors.
"""
random.seed(args.seed)
factors = Factors()
factors.set_min_max_prob(args.min_prob, args.max_prob)
factors.set_common_event_factors(args.common_b, args.common_g,
args.parents_b, args.parents_g)
factors.set_num_factors(args.num_args, args.num_basic, args.num_house,
args.num_ccf)
factors.set_gate_weights([float(i) for i in args.weights_g])
if args.num_gate:
factors.constrain_num_gate(args.num_gate)
factors.calculate()
return factors
def main(argv=None):
"""The main function of the fault tree generator.
Args:
argv: An optional list containing the command-line arguments.
If None, the command-line arguments from sys will be used.
Raises:
ArgumentTypeError: There are problems with the arguments.
FactorError: Invalid setup for factors.
"""
args = manage_cmd_args(argv)
factors = setup_factors(args)
fault_tree = generate_fault_tree(args.ft_name, args.root, factors)
with open(args.out, "w") as tree_file:
if args.aralia:
tree_file.write(fault_tree.to_aralia())
else:
write_info(fault_tree, tree_file, args.seed)
write_summary(fault_tree, tree_file)
tree_file.write(fault_tree.to_xml(args.nest))
if __name__ == "__main__":
try:
main()
except ap.ArgumentTypeError as err:
print("Argument Error:\n" + str(err))
sys.exit(2)
except FactorError as err:
print("Error in factors:\n" + str(err))
sys.exit(1)
|