1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
/*
* Copyright (C) 2016-2018 Olzhas Rakhimov
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ext/linear_map.h"
#include <string>
#include <boost/container/vector.hpp>
#include <catch.hpp>
// Explicit instantiations with some common types.
template class ext::linear_map<int, int>;
template class ext::linear_map<int, double>;
template class ext::linear_map<int, std::string>;
template class ext::linear_map<std::string, std::string>;
namespace {
// The bare minimum class to be a key type for the linear map.
class KeyClass {
friend bool operator==(const KeyClass& lhs, const KeyClass& rhs) {
return lhs.a == rhs.a && lhs.b == rhs.b;
}
int a;
std::string b;
};
} // namespace
template class ext::linear_map<KeyClass, std::string>;
// Move erase policy instantiation.
template class ext::linear_map<KeyClass, std::string, ext::MoveEraser>;
#ifndef __INTEL_COMPILER
// Passing another underlying container types.
template class ext::linear_map<int, int, ext::DefaultEraser,
boost::container::vector>;
template class ext::linear_map<KeyClass, std::string, ext::MoveEraser,
boost::container::vector>;
#endif
namespace std {
template <typename T1, typename T2>
std::ostream& operator<<(std::ostream& out, const std::pair<T1, T2>& value) {
out << "{" << Catch::StringMaker<T1>::convert(value.first) << ", "
<< Catch::StringMaker<T2>::convert(value.second) << "}";
return out;
}
} // namespace std
namespace scram::test {
using IntMap = ext::linear_map<int, int>;
TEST_CASE("linear map ctors", "[linear_map]") {
SECTION("default ctor") {
IntMap m_default;
CHECK(m_default.size() == 0);
CHECK(m_default.empty());
}
IntMap m_init_list = {{1, -1}, {2, -2}, {3, -3}};
SECTION("initializer list") {
CHECK(m_init_list.size() == 3);
CHECK_FALSE(m_init_list.empty());
}
SECTION("copy ctor") {
auto m_copy(m_init_list);
CHECK(m_copy.size() == 3);
CHECK_FALSE(m_copy.empty());
CHECK(m_copy == m_init_list);
SECTION("copy itself") {
m_copy = m_copy;
CHECK(m_copy.size() == 3);
CHECK(m_copy == m_init_list);
}
}
SECTION("move ctor") {
auto construct_extra_copy(m_init_list);
auto m_move(std::move(construct_extra_copy));
CHECK(construct_extra_copy.empty());
CHECK(m_move.size() == 3);
CHECK_FALSE(m_move.empty());
CHECK(m_move == m_init_list);
}
SECTION("copy assignment") {
IntMap m_assign_copy;
m_assign_copy = m_init_list;
CHECK(m_assign_copy == m_init_list);
}
SECTION("move assignment") {
IntMap m_assign_move;
auto assign_extra_copy(m_init_list);
m_assign_move = std::move(assign_extra_copy);
CHECK(assign_extra_copy.empty());
CHECK(m_assign_move == m_init_list);
}
SECTION("range ctor") {
IntMap::container_type m_data = {{1, -1}, {2, -2}, {3, -3}, {3, -4}};
IntMap m_range(m_data.begin(), m_data.end());
CHECK(m_range == m_init_list);
}
SECTION("repeat") {
IntMap m_repeat_init{{1, -1}, {2, -2}, {3, -3}, {3, -4}};
CHECK(m_repeat_init == m_init_list);
}
}
TEST_CASE("linear map equality", "[linear_map]") {
IntMap m1;
SECTION("compare to itself") { CHECK(m1 == m1); }
IntMap m2;
SECTION("compare to new") { CHECK(m2 == m1); }
m1 = {{1, -1}, {2, -2}, {3, -3}};
SECTION("with equal values") {
CHECK(m1 == m1);
CHECK_FALSE(m2 == m1);
SECTION("copy") {
m2 = m1;
CHECK(m2 == m1);
}
SECTION("new with the same values") {
m2 = {{1, -1}, {2, -2}, {3, -3}};
CHECK(m2 == m1);
}
SECTION("new with different order") {
m2 = {{2, -2}, {1, -1}, {3, -3}};
CHECK(m2 == m1);
}
}
SECTION("with unequal values") {
SECTION("one less") {
m2 = {{1, -1}, {2, -2}};
CHECK_FALSE(m2 == m1);
}
SECTION("same keys but different values") {
m2 = {{1, 1}, {2, 2}, {3, 3}};
CHECK_FALSE(m2 == m1);
}
}
}
TEST_CASE("linear map iterators", "[linear_map]") {
IntMap m = {{1, -1}, {2, -2}, {3, -3}};
IntMap::container_type c = {{1, -1}, {2, -2}, {3, -3}};
CHECK(std::next(m.begin(), m.size()) == m.end());
CHECK(std::next(m.rbegin(), m.size()) == m.rend());
CHECK(std::next(m.cbegin(), m.size()) == m.cend());
CHECK(std::next(m.crbegin(), m.size()) == m.crend());
const auto& m_ref = m;
CHECK(std::next(m_ref.begin(), m_ref.size()) == m_ref.end());
CHECK(std::next(m_ref.rbegin(), m_ref.size()) == m_ref.rend());
CHECK(std::next(m_ref.cbegin(), m_ref.size()) == m_ref.cend());
CHECK(std::next(m_ref.crbegin(), m_ref.size()) == m_ref.crend());
auto it_c = c.begin();
int num_elements = 0;
int key_sum = 0;
int value_sum = 0;
for (const auto& entry : m) {
INFO(std::distance(c.begin(), it_c));
CHECK(*it_c++ == entry);
++num_elements;
key_sum += entry.first;
value_sum += entry.second;
}
CHECK(num_elements == 3);
CHECK(key_sum == 6);
CHECK(value_sum == -6);
CHECK(m.data() == c);
}
SCENARIO("linear map clear", "[linear_map]") {
GIVEN("empty linear map") {
IntMap m;
REQUIRE(m.empty());
REQUIRE(m.capacity() >= m.size());
auto init_capacity = m.capacity();
WHEN("clear") {
m.clear();
THEN("no change") {
CHECK(m.empty());
CHECK(m.capacity() == init_capacity);
}
}
}
GIVEN("non empty linear map") {
IntMap m = {{1, -1}, {2, -2}, {3, -3}};
CHECK_FALSE(m.empty());
REQUIRE(m.capacity() >= m.size());
auto init_capacity = m.capacity();
WHEN("clear") {
m.clear();
THEN("the map is empty but capacity is not") {
CHECK(m.empty());
CHECK(m.capacity() == init_capacity);
}
}
}
}
SCENARIO("linear map capacity reserve", "[linear_map]") {
GIVEN("A linear map with some items") {
IntMap m = {{1, -1}, {2, -2}, {3, -3}};
REQUIRE(m.size() == 3);
REQUIRE(m.capacity() >= 3);
WHEN("the capacity is increased") {
m.reserve(10);
THEN("the capacity change but not size") {
REQUIRE(m.size() == 3);
REQUIRE(m.capacity() >= 10);
}
}
WHEN("the capacity is reduced") {
m.reserve(0);
THEN("the size and capacity do not change") {
REQUIRE(m.size() == 3);
REQUIRE(m.capacity() >= 3);
}
}
}
}
TEST_CASE("linear map swap", "[linear_map]") {
const IntMap m1 = {{1, -1}, {2, -2}, {3, -3}};
const IntMap m2 = {{4, -4}, {5, -5}};
IntMap ms1 = m1;
IntMap ms2 = m2;
SECTION("member swap") {
ms1.swap(ms2);
CHECK(ms2 == m1);
CHECK(ms1 == m2);
}
SECTION("ADL swap") {
swap(ms1, ms2);
CHECK(ms2 == m1);
CHECK(ms1 == m2);
}
SECTION("STD swap") {
std::swap(ms1, ms2);
CHECK(ms2 == m1);
CHECK(ms1 == m2);
}
}
TEST_CASE("linear map default erase", "[linear_map]") {
IntMap m = {{1, -1}, {2, -2}, {3, -3}};
IntMap m_expected = {{2, -2}, {3, -3}};
SECTION("erase w/ key") {
m.erase(1);
CHECK(m == m_expected);
CHECK(m.data() == m_expected.data());
}
SECTION("erase w/ iterator") {
m.erase(m.begin());
CHECK(m == m_expected);
CHECK(m.data() == m_expected.data());
}
SECTION("erase w/ const iterator") {
m.erase(m.cbegin());
CHECK(m == m_expected);
CHECK(m.data() == m_expected.data());
}
}
TEST_CASE("linear map move erase", "[linear_map]") {
using MoveMap = ext::linear_map<int, int, ext::MoveEraser>;
MoveMap m = {{1, -1}, {2, -2}, {3, -3}};
MoveMap m_expected = {{3, -3}, {2, -2}};
SECTION("erase w/ key") {
m.erase(1);
CHECK(m == m_expected);
CHECK(m.data() == m_expected.data());
}
SECTION("erase w/ iterator") {
m.erase(m.begin());
CHECK(m == m_expected);
CHECK(m.data() == m_expected.data());
}
SECTION("erase w/ const iterator") {
m.erase(m.cbegin());
CHECK(m == m_expected);
CHECK(m.data() == m_expected.data());
}
}
TEST_CASE("linear map find", "[linear_map]") {
IntMap m = {{1, -1}, {2, -2}, {3, -3}};
CHECK(m.count(1) == 1);
CHECK(m.count(5) == 0);
CHECK(m.find(1) == m.begin());
CHECK(m.find(1)->first == 1);
int key = 2;
CHECK(m.find(key) == std::next(m.begin(), 1));
CHECK(m.find(key)->first == key);
CHECK(m.find(3) == std::next(m.begin(), 2));
CHECK(m.find(5) == m.end());
}
TEST_CASE("linear map operator index", "[linear_map]") {
IntMap m;
m[1] = -1;
int k = 2;
m[k] = -2;
m[3] = -3;
IntMap expected = {{1, -1}, {2, -2}, {3, -3}};
REQUIRE(m == expected);
m[3] = -4;
IntMap changed = {{1, -1}, {2, -2}, {3, -4}};
REQUIRE(m == changed);
}
TEST_CASE("linear map at", "[linear_map]") {
IntMap m = {{1, -1}, {2, -2}, {3, -3}};
CHECK(m.at(1) == -1);
CHECK_THROWS_AS(m.at(5), std::out_of_range);
const auto& m_ref = m;
CHECK(m_ref.at(2) == -2);
m.at(2) = -4;
IntMap m_expected = {{1, -1}, {2, -4}, {3, -3}};
CHECK(m == m_expected);
}
TEST_CASE("linear map insert single", "[linear_map]") {
IntMap m;
auto ret = m.insert({1, -1});
CHECK(ret.second);
REQUIRE_FALSE(ret.first == m.end());
CHECK(ret.first == m.begin());
CHECK(ret.first->first == 1);
CHECK(ret.first->second == -1);
IntMap::value_type v = {2, -2};
ret = m.insert(v);
CHECK(ret.second);
CHECK(ret.first == std::next(m.begin(), 1));
CHECK(ret.first->first == 2);
CHECK(ret.first->second == -2);
auto repeat = m.insert({2, -3});
CHECK_FALSE(repeat.second);
CHECK(ret.first == repeat.first);
m.insert({3, -3});
IntMap expected = {{1, -1}, {2, -2}, {3, -3}};
CHECK(m == expected);
}
TEST_CASE("linear map insert range", "[linear_map]") {
IntMap m;
std::vector<std::pair<int, int>> data = {{1, -1}, {2, -2}, {3, -3}, {3, -4}};
IntMap expected = {{1, -1}, {2, -2}, {3, -3}};
SECTION("equal iterators") {
m.insert(data.begin(), data.begin());
CHECK(m.empty());
}
SECTION("shift two") {
m.insert(data.begin(), data.begin() + 2);
CHECK(m.size() == 2);
}
SECTION("begin to end") {
m.insert(data.begin(), data.end());
CHECK(m.size() == expected.size());
CHECK(m == expected);
}
}
TEST_CASE("linear map emplace", "[linear_map]") {
IntMap m;
auto ret = m.emplace(1, -1);
CHECK(ret.second);
CHECK(ret.first == m.begin());
CHECK(ret.first->first == 1);
CHECK(ret.first->second == -1);
int k = 2;
int v = -2;
ret = m.emplace(k, v);
CHECK(ret.second);
CHECK(ret.first == std::next(m.begin()));
CHECK(ret.first->first == 2);
CHECK(ret.first->second == -2);
auto repeat = m.emplace(2, -3);
CHECK_FALSE(repeat.second);
CHECK(repeat.first == ret.first);
m.emplace(3, -3);
IntMap expected = {{1, -1}, {2, -2}, {3, -3}};
CHECK(m == expected);
}
} // namespace scram::test
|