1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
|
/*
* Copyright (C) 2014-2018 Olzhas Rakhimov
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "risk_analysis_tests.h"
#include <utility>
#include "utility.h"
#include "env.h"
#include "error.h"
#include "initializer.h"
#include "reporter.h"
#include "xml.h"
namespace scram::core::test {
const char* scram::core::test::RiskAnalysisTest::parameter_ = nullptr;
const std::set<std::set<std::string>> RiskAnalysisTest::kUnity = {
std::set<std::string>{}};
RiskAnalysisTest::RiskAnalysisTest() {
if (HasParam()) {
std::string_view param = GetParam();
if (param == "pi") {
settings.algorithm("bdd");
settings.prime_implicants(true);
} else {
settings.algorithm(param);
}
}
}
void RiskAnalysisTest::ProcessInputFiles(
const std::vector<std::string>& input_files, bool allow_extern) {
mef::Initializer init(input_files, settings, allow_extern);
model = init.model();
analysis = std::make_unique<RiskAnalysis>(model.get(), settings);
result_ = Result();
}
void RiskAnalysisTest::CheckReport(const std::vector<std::string>& tree_input) {
static xml::Validator validator(env::report_schema());
REQUIRE_NOTHROW(ProcessInputFiles(tree_input));
REQUIRE_NOTHROW(analysis->Analyze());
fs::path temp_file = utility::GenerateFilePath();
INFO("input: " + tree_input.front());
INFO("output: " + temp_file.string());
REQUIRE_NOTHROW(Reporter().Report(*analysis, temp_file.string()));
REQUIRE_NOTHROW(xml::Document(temp_file.string(), &validator));
fs::remove(temp_file);
}
const std::set<std::set<std::string>>& RiskAnalysisTest::products() {
assert(analysis->results().size() == 1);
if (result_.products.empty()) {
for (const Product& product :
analysis->results().front().fault_tree_analysis->products()) {
result_.products.emplace(Convert(product));
}
}
return result_.products;
}
std::vector<int> RiskAnalysisTest::ProductDistribution() {
assert(analysis->results().size() == 1);
return analysis->results()
.front()
.fault_tree_analysis->products()
.Distribution();
}
void RiskAnalysisTest::PrintProducts() {
assert(analysis->results().size() == 1);
Print(analysis->results().front().fault_tree_analysis->products());
}
const std::map<std::set<std::string>, double>&
RiskAnalysisTest::product_probability() {
assert(analysis->results().size() == 1);
if (result_.product_probability.empty()) {
for (const Product& product :
analysis->results().front().fault_tree_analysis->products()) {
result_.product_probability.emplace(Convert(product), product.p());
}
}
return result_.product_probability;
}
std::map<std::string, double> RiskAnalysisTest::sequences() {
assert(model->alignments().empty());
assert(analysis->event_tree_results().size() == 1);
std::map<std::string, double> results;
for (const core::EventTreeAnalysis::Result& result :
analysis->event_tree_results()
.front()
.event_tree_analysis->sequences()) {
results.emplace(result.sequence.name(), result.p_sequence);
}
return results;
}
std::set<std::string> RiskAnalysisTest::Convert(const Product& product) {
std::set<std::string> string_set;
for (const Literal& literal : product) {
string_set.insert((literal.complement ? "not " : "") + literal.event.id());
}
return string_set;
}
TEST_F(RiskAnalysisTest, ProcessInput) {
std::string tree_input = "tests/input/fta/correct_tree_input.xml";
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
CHECK(gates().size() == 3);
CHECK(gates().count("TrainOne") == 1);
CHECK(gates().count("TrainTwo") == 1);
CHECK(gates().count("TopEvent") == 1);
CHECK(basic_events().size() == 4);
CHECK(basic_events().count("PumpOne") == 1);
CHECK(basic_events().count("PumpTwo") == 1);
CHECK(basic_events().count("ValveOne") == 1);
CHECK(basic_events().count("ValveTwo") == 1);
REQUIRE(gates().count("TopEvent"));
mef::Gate* top = gates().find("TopEvent")->get();
CHECK(top->id() == "TopEvent");
REQUIRE_NOTHROW(top->formula().type());
CHECK(top->formula().type() == mef::kAnd);
CHECK(top->formula().event_args().size() == 2);
REQUIRE(gates().count("TrainOne"));
mef::Gate* inter = gates().find("TrainOne")->get();
CHECK(inter->id() == "TrainOne");
REQUIRE_NOTHROW(inter->formula().type());
CHECK(inter->formula().type() == mef::kOr);
CHECK(inter->formula().event_args().size() == 2);
REQUIRE(basic_events().count("ValveOne"));
mef::BasicEvent* primary = basic_events().find("ValveOne")->get();
CHECK(primary->id() == "ValveOne");
}
// Test Probability Assignment
TEST_F(RiskAnalysisTest, PopulateProbabilities) {
// Input with probabilities
std::string tree_input = "tests/input/fta/correct_tree_input_with_probs.xml";
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE(basic_events().size() == 4);
REQUIRE(basic_events().count("PumpOne") == 1);
REQUIRE(basic_events().count("PumpTwo") == 1);
REQUIRE(basic_events().count("ValveOne") == 1);
REQUIRE(basic_events().count("ValveTwo") == 1);
mef::BasicEvent* p1 = basic_events().find("PumpOne")->get();
mef::BasicEvent* p2 = basic_events().find("PumpTwo")->get();
mef::BasicEvent* v1 = basic_events().find("ValveOne")->get();
mef::BasicEvent* v2 = basic_events().find("ValveTwo")->get();
REQUIRE_NOTHROW(p1->p());
REQUIRE_NOTHROW(p2->p());
REQUIRE_NOTHROW(v1->p());
REQUIRE_NOTHROW(v2->p());
CHECK(p1->p() == 0.6);
CHECK(p2->p() == 0.7);
CHECK(v1->p() == 0.4);
CHECK(v2->p() == 0.5);
}
// Test Analysis of Two train system.
TEST_P(RiskAnalysisTest, AnalyzeDefault) {
std::string tree_input = "tests/input/fta/correct_tree_input.xml";
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
std::set<std::set<std::string>> mcs = {{"PumpOne", "PumpTwo"},
{"PumpOne", "ValveTwo"},
{"PumpTwo", "ValveOne"},
{"ValveOne", "ValveTwo"}};
CHECK(products() == mcs);
PrintProducts(); // Quick visual verification.
}
TEST_P(RiskAnalysisTest, AnalyzeNonCoherentDefault) {
std::string tree_input = "tests/input/fta/correct_non_coherent.xml";
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
if (settings.prime_implicants()) {
std::set<std::set<std::string>> pi = {{"not PumpOne", "ValveOne"},
{"PumpOne", "PumpTwo"},
{"PumpOne", "ValveTwo"},
{"PumpTwo", "ValveOne"},
{"ValveOne", "ValveTwo"}};
CHECK(products().size() == 5);
CHECK(products() == pi);
} else {
std::set<std::set<std::string>> mcs = {
{"PumpOne", "PumpTwo"}, {"PumpOne", "ValveTwo"}, {"ValveOne"}};
CHECK(products() == mcs);
}
}
TEST_P(RiskAnalysisTest, AnalyzeWithProbability) {
std::string with_prob = "tests/input/fta/correct_tree_input_with_probs.xml";
std::set<std::string> mcs_1 = {"PumpOne", "PumpTwo"};
std::set<std::string> mcs_2 = {"PumpOne", "ValveTwo"};
std::set<std::string> mcs_3 = {"PumpTwo", "ValveOne"};
std::set<std::string> mcs_4 = {"ValveOne", "ValveTwo"};
std::set<std::set<std::string>> mcs = {mcs_1, mcs_2, mcs_3, mcs_4};
settings.probability_analysis(true);
REQUIRE_NOTHROW(ProcessInputFiles({with_prob}));
REQUIRE_NOTHROW(analysis->Analyze());
CHECK(products() == mcs);
if (settings.approximation() == Approximation::kRareEvent) {
CHECK(p_total() == Approx(1));
} else {
CHECK(p_total() == Approx(0.646));
}
CHECK(product_probability().at(mcs_1) == Approx(0.42));
CHECK(product_probability().at(mcs_2) == Approx(0.3));
CHECK(product_probability().at(mcs_3) == Approx(0.28));
CHECK(product_probability().at(mcs_4) == Approx(0.2));
}
// Test for exact probability calculation
// regardless of the qualitative analysis algorithm.
TEST_P(RiskAnalysisTest, EnforceExactProbability) {
std::string with_prob = "tests/input/fta/correct_tree_input_with_probs.xml";
settings.probability_analysis(true).approximation("none");
REQUIRE_NOTHROW(ProcessInputFiles({with_prob}));
REQUIRE_NOTHROW(analysis->Analyze());
CHECK(p_total() == Approx(0.646));
}
TEST_P(RiskAnalysisTest, AnalyzeNestedFormula) {
std::string nested_input = "tests/input/fta/nested_formula.xml";
std::set<std::set<std::string>> mcs = {{"PumpOne", "PumpTwo"},
{"PumpOne", "ValveTwo"},
{"PumpTwo", "ValveOne"},
{"ValveOne", "ValveTwo"}};
REQUIRE_NOTHROW(ProcessInputFiles({nested_input}));
REQUIRE_NOTHROW(analysis->Analyze());
CHECK(products() == mcs);
}
TEST_F(RiskAnalysisTest, ImportanceDefault) {
std::string with_prob = "tests/input/fta/correct_tree_input_with_probs.xml";
settings.importance_analysis(true);
REQUIRE_NOTHROW(ProcessInputFiles({with_prob}));
REQUIRE_NOTHROW(analysis->Analyze());
TestImportance({{"PumpOne", {2, 0.51, 0.4737, 0.7895, 1.316, 1.9}},
{"PumpTwo", {2, 0.38, 0.4118, 0.8235, 1.176, 1.7}},
{"ValveOne", {2, 0.34, 0.2105, 0.5263, 1.316, 1.267}},
{"ValveTwo", {2, 0.228, 0.1765, 0.5882, 1.176, 1.214}}});
}
TEST_F(RiskAnalysisTest, ImportanceNeg) {
std::string tree_input = "tests/input/fta/importance_neg_test.xml";
settings.prime_implicants(true).importance_analysis(true);
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
CHECK(p_total() == Approx(0.04459));
// Check importance values with negative event.
TestImportance({{"PumpOne", {3, 0.0765, 0.1029, 0.1568, 2.613, 1.115}},
{"PumpTwo", {2, 0.057, 0.08948, 0.1532, 2.189, 1.098}},
{"ValveOne", {3, 0.94, 0.8432, 0.8495, 21.237, 6.379}},
{"ValveTwo", {2, 0.0558, 0.06257, 0.1094, 2.189, 1.067}}});
}
TEST_P(RiskAnalysisTest, ImportanceSingleEvent) {
std::string tree_input = "tests/input/core/null_a.xml";
settings.importance_analysis(true);
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
TestImportance({{"OnlyChild", {1, 1, 1, 1, 2, 0}}});
}
TEST_P(RiskAnalysisTest, ImportanceZeroProbability) {
std::string tree_input = "tests/input/core/zero_prob.xml";
settings.importance_analysis(true);
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
TestImportance({{"A", {1, 1, 0, 0, 0, 0}}});
}
TEST_P(RiskAnalysisTest, ImportanceOneProbability) {
std::string tree_input = "tests/input/core/one_prob.xml";
settings.importance_analysis(true);
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
TestImportance({{"A", {1, 1, 1, 1, 1, 0}}});
}
// Apply the rare event approximation.
TEST_F(RiskAnalysisTest, ImportanceRareEvent) {
std::string with_prob = "tests/input/fta/importance_test.xml";
// Probability calculations with the rare event approximation.
settings.approximation("rare-event").importance_analysis(true);
REQUIRE_NOTHROW(ProcessInputFiles({with_prob}));
REQUIRE_NOTHROW(analysis->Analyze());
CHECK(p_total() == Approx(0.012)); // Adjusted probability.
TestImportance({{"PumpOne", {2, 0.12, 0.6, 0.624, 10.4, 2.5}},
{"PumpTwo", {2, 0.1, 0.5833, 0.6125, 8.75, 2.4}},
{"ValveOne", {2, 0.12, 0.4, 0.424, 10.6, 1.667}},
{"ValveTwo", {2, 0.1, 0.4167, 0.4458, 8.917, 1.714}}});
}
// Apply the minimal cut set upper bound approximation.
TEST_F(RiskAnalysisTest, Mcub) {
std::string with_prob = "tests/input/fta/correct_tree_input_with_probs.xml";
// Probability calculations with the MCUB approximation.
settings.approximation("mcub").importance_analysis(true);
REQUIRE_NOTHROW(ProcessInputFiles({with_prob}));
REQUIRE_NOTHROW(analysis->Analyze());
CHECK(p_total() == Approx(0.766144));
}
// Apply the minimal cut set upper bound approximation for non-coherent tree.
// This should be a warning.
TEST_F(RiskAnalysisTest, McubNonCoherent) {
std::string with_prob = "tests/input/core/a_and_not_b.xml";
// Probability calculations with the MCUB approximation.
settings.approximation("mcub").probability_analysis(true);
REQUIRE_NOTHROW(ProcessInputFiles({with_prob}));
REQUIRE_NOTHROW(analysis->Analyze());
CHECK(p_total() == Approx(0.10));
}
// Test Monte Carlo Analysis
/// @todo Expand this test.
TEST_P(RiskAnalysisTest, AnalyzeMC) {
settings.uncertainty_analysis(true);
std::string tree_input = "tests/input/fta/correct_tree_input_with_probs.xml";
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
}
TEST_P(RiskAnalysisTest, AnalyzeProbabilityOverTime) {
std::string tree_input = "tests/input/core/single_exponential.xml";
settings.probability_analysis(true).time_step(24).mission_time(120);
std::vector<double> curve = {0, 2.399e-4, 4.7989e-4,
7.197e-4, 9.595e-4, 1.199e-3};
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
REQUIRE_FALSE(analysis->results().empty());
REQUIRE(analysis->results().front().probability_analysis);
auto it = curve.begin();
double time = 0;
for (const std::pair<double, double>& p_vs_time :
analysis->results().front().probability_analysis->p_time()) {
REQUIRE_FALSE(it == curve.end());
if (time >= settings.mission_time()) {
CHECK(p_vs_time.second == settings.mission_time());
} else {
CHECK(p_vs_time.second == time);
}
CHECK(p_vs_time.first == Approx(*it).epsilon(1e-3));
time += settings.time_step();
++it;
}
REQUIRE(time);
}
TEST_P(RiskAnalysisTest, AnalyzeSil) {
std::string tree_input = "tests/input/core/single_exponential.xml";
settings.time_step(24).safety_integrity_levels(true);
double pfd_fractions[] = {1.142e-4, 1.0275e-3, 1.02796e-2,
0.1033, 0.88527, 0};
double pfh_fractions[] = {2.74e-7, 2.466e-6, 2.466e-5, 2.466e-4, 0.999726, 0};
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
REQUIRE_FALSE(analysis->results().empty());
REQUIRE(analysis->results().front().probability_analysis);
const auto& prob_an = *analysis->results().front().probability_analysis;
CHECK(prob_an.sil().pfd_avg == Approx(0.04255).epsilon(1e-3));
CHECK(prob_an.sil().pfh_avg == Approx(9.77e-6).epsilon(1e-3));
auto compare_fractions = [](const auto& sil_fractions, const auto& result,
const char* type) {
auto it = std::begin(sil_fractions);
for (const std::pair<const double, double>& result_bucket : result) {
CAPTURE(type);
INFO("bucket: " + std::to_string(result_bucket.first));
REQUIRE_FALSE(it == std::end(sil_fractions));
CHECK(result_bucket.second == Approx(*it).epsilon(1e-3));
++it;
}
REQUIRE(it == std::end(sil_fractions));
};
compare_fractions(pfd_fractions, prob_an.sil().pfd_fractions, "PFD");
compare_fractions(pfh_fractions, prob_an.sil().pfh_fractions, "PFH");
}
TEST_P(RiskAnalysisTest, AnalyzeEventTree) {
const char* tree_input = "input/EventTrees/bcd.xml";
settings.probability_analysis(true);
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
CHECK(analysis->event_tree_results().size() == 1);
const auto& results = sequences();
REQUIRE(results.size() == 2);
std::map<std::string, double> expected = {{"Success", 0.594},
{"Failure", 0.406}};
for (const auto& result : expected) {
INFO("state: " + result.first);
REQUIRE(results.count(result.first));
CHECK(results.at(result.first) == Approx(result.second));
}
}
TEST_P(RiskAnalysisTest, AnalyzeTestEventDefault) {
const char* tree_input = "tests/input/eta/test_event_default.xml";
settings.probability_analysis(true);
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
CHECK(analysis->event_tree_results().size() == 1);
const auto& results = sequences();
REQUIRE(results.size() == 1);
CHECK(results.begin()->first == "S");
CHECK(results.begin()->second == Approx(0.5));
}
TEST_P(RiskAnalysisTest, AnalyzeTestInitatingEvent) {
const char* tree_input = "tests/input/eta/test_initiating_event.xml";
settings.probability_analysis(true);
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
CHECK(analysis->event_tree_results().size() == 1);
const auto& results = sequences();
REQUIRE(results.size() == 1);
CHECK(results.begin()->first == "S");
CHECK(results.begin()->second == Approx(0.5));
}
TEST_P(RiskAnalysisTest, AnalyzeTestFunctionalEvent) {
const char* tree_input[] = {"tests/input/eta/test_functional_event.xml",
"tests/input/eta/test_functional_event_link.xml"};
settings.probability_analysis(true);
for (auto input : tree_input) {
REQUIRE_NOTHROW(ProcessInputFiles({input}));
CAPTURE(input);
REQUIRE_NOTHROW(analysis->Analyze());
CHECK(analysis->event_tree_results().size() == 1);
const auto& results = sequences();
CAPTURE(input);
REQUIRE(results.size() == 1);
CHECK(results.begin()->first == "S");
CHECK(results.begin()->second == Approx(0.5));
}
}
// Test Reporting capabilities
// Tests the output against the schema. However the contents of the
// output are not verified or validated.
TEST_F(RiskAnalysisTest, ReportIOError) {
std::string tree_input = "tests/input/fta/correct_tree_input.xml";
// Messing up the output file.
std::string output = "abracadabra.cadabraabra/output.txt";
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
CHECK_THROWS_AS(Reporter().Report(*analysis, output), IOError);
}
TEST_F(RiskAnalysisTest, ReportEmpty) {
std::string tree_input = "tests/input/empty_model.xml";
CheckReport({tree_input});
}
// Reporting of the default analysis for MCS only without probabilities.
TEST_P(RiskAnalysisTest, ReportDefaultMCS) {
CheckReport({"tests/input/fta/correct_tree_input.xml"});
}
// Reporting of analysis for MCS with probability results.
TEST_F(RiskAnalysisTest, ReportProbability) {
std::string tree_input = "tests/input/fta/correct_tree_input_with_probs.xml";
settings.probability_analysis(true);
CheckReport({tree_input});
}
TEST_F(RiskAnalysisTest, ReportProbabilityCurve) {
std::string tree_input = "tests/input/core/single_exponential.xml";
settings.probability_analysis(true).time_step(24).mission_time(720);
CheckReport({tree_input});
}
TEST_F(RiskAnalysisTest, ReportSil) {
std::string tree_input = "tests/input/core/single_exponential.xml";
settings.time_step(24).safety_integrity_levels(true).mission_time(720);
CheckReport({tree_input});
}
// Reporting of importance analysis.
TEST_F(RiskAnalysisTest, ReportImportanceFactors) {
std::string tree_input = "tests/input/fta/correct_tree_input_with_probs.xml";
settings.importance_analysis(true);
CheckReport({tree_input});
}
// Reporting of uncertainty analysis.
TEST_F(RiskAnalysisTest, ReportUncertaintyResults) {
std::string tree_input = "tests/input/fta/correct_tree_input_with_probs.xml";
settings.uncertainty_analysis(true);
CheckReport({tree_input});
}
// Reporting event tree analysis with an initiating event.
TEST_F(RiskAnalysisTest, ReportInitiatingEventAnalysis) {
const char* tree_input = "input/EventTrees/bcd.xml";
settings.probability_analysis(true);
CheckReport({tree_input});
}
// Reporting of CCF analysis.
TEST_F(RiskAnalysisTest, ReportCCF) {
std::string tree_input = "tests/input/core/mgl_ccf.xml";
settings.ccf_analysis(true).importance_analysis(true);
CheckReport({tree_input});
}
// Reporting of Negative events in MCS.
TEST_F(RiskAnalysisTest, ReportNegativeEvent) {
std::string tree_input = "tests/input/core/a_or_not_b.xml";
settings.probability_analysis(true);
CheckReport({tree_input});
}
// Reporting of all possible analyses.
TEST_F(RiskAnalysisTest, ReportAll) {
std::string tree_input = "tests/input/fta/correct_tree_input_with_probs.xml";
settings.importance_analysis(true).uncertainty_analysis(true).ccf_analysis(
true);
CheckReport({tree_input});
}
// Reporting with public or private roles.
TEST_F(RiskAnalysisTest, ReportRoles) {
std::string tree_input = "tests/input/fta/mixed_roles.xml";
CheckReport({tree_input});
}
// Reporting of orphan primary events.
TEST_F(RiskAnalysisTest, ReportOrphanPrimaryEvents) {
std::string tree_input = "tests/input/fta/orphan_primary_event.xml";
CheckReport({tree_input});
}
// Reporting of unused parameters.
TEST_F(RiskAnalysisTest, ReportUnusedParameters) {
std::string tree_input = "tests/input/fta/unused_parameter.xml";
CheckReport({tree_input});
}
TEST_F(RiskAnalysisTest, ReportUnusedEventTreeElements) {
std::string tree_input = "tests/input/eta/unused_elements.xml";
CheckReport({tree_input});
}
TEST_F(RiskAnalysisTest, ReportAlignment) {
std::string tree_input = "input/TwoTrain/two_train_alignment.xml";
CheckReport({tree_input});
}
TEST_F(RiskAnalysisTest, ReportAlignmentEventTree) {
std::string dir = "input/EventTrees/";
settings.probability_analysis(true);
CheckReport({dir + "attack_alignment.xml", dir + "attack.xml"});
}
// NAND and NOR as a child cases.
TEST_P(RiskAnalysisTest, ChildNandNorGates) {
std::string tree_input = "tests/input/fta/children_nand_nor.xml";
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
if (settings.prime_implicants()) {
std::set<std::set<std::string>> pi = {
{"not PumpOne", "not PumpTwo", "not ValveOne"},
{"not PumpOne", "not ValveTwo", "not ValveOne"}};
CHECK(products() == pi);
} else {
CHECK(products() == kUnity);
}
}
// Simple test for several house event propagation.
TEST_P(RiskAnalysisTest, ManyHouseEvents) {
std::string tree_input = "tests/input/fta/constant_propagation.xml";
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
std::set<std::set<std::string>> mcs = {{"A", "B"}};
CHECK(products() == mcs);
}
// Simple test for several constant gate propagation.
TEST_P(RiskAnalysisTest, ConstantGates) {
std::string tree_input = "tests/input/fta/constant_gates.xml";
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
CHECK(products() == kUnity);
}
// Mixed roles with undefined event types
TEST_F(RiskAnalysisTest, UndefinedEventsMixedRoles) {
std::string tree_input = "tests/input/fta/ambiguous_events_with_roles.xml";
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}));
REQUIRE_NOTHROW(analysis->Analyze());
std::set<std::set<std::string>> mcs = {
{"C", "Ambiguous.Private.A", "Ambiguous.Private.B"},
{"G", "Ambiguous.Private.A", "Ambiguous.Private.B"}};
CHECK(products() == mcs);
}
// Extern function call check.
TEST_P(RiskAnalysisTest, ExternFunctionProbability) {
std::string tree_input = "tests/input/model/extern_full_check.xml";
settings.probability_analysis(true);
REQUIRE_NOTHROW(ProcessInputFiles({tree_input}, true));
REQUIRE_NOTHROW(analysis->Analyze());
std::set<std::set<std::string>> mcs = {{"e1"}};
CHECK(products() == mcs);
CHECK(p_total() == Approx(0.1));
}
} // namespace scram::core::test
|