File: decode.c

package info (click to toggle)
scrappie 1.4.2-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 61,708 kB
  • sloc: ansic: 114,526; python: 1,586; makefile: 158; sh: 122
file content (1940 lines) | stat: -rw-r--r-- 70,707 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
#include <stdio.h>

#include "decode.h"
#include "scrappie_stdlib.h"
#include "util.h"

#define NBASE 4
#define BIG_FLOAT 1.e30f

float viterbi_backtrace(float const *score, size_t n, const_scrappie_imatrix traceback, int * seq){
    RETURN_NULL_IF(NULL == score, NAN);
    RETURN_NULL_IF(NULL == seq, NAN);

    const size_t nblock = traceback->nc;
    for(size_t i=0 ; i < nblock ; i++){
        // Initialise entries to stay
        seq[i] = -1;
    }

    int last_state = argmaxf(score, n);
    float logscore = score[last_state];
    for(size_t i=0 ; i < nblock ; i++){
        const size_t ri = nblock - i - 1;
        const int state = traceback->data.f[ri * traceback->stride + last_state];
        if(state >= 0){
            seq[ri] = last_state;
            last_state = state;
        }
    }

    return logscore;
}

float viterbi_local_backtrace(float const *score, size_t n, const_scrappie_imatrix traceback, int * seq){
    RETURN_NULL_IF(NULL == score, NAN);
    RETURN_NULL_IF(NULL == seq, NAN);

    const size_t nblock = traceback->nc;
    for(size_t i=0 ; i <= nblock ; i++){
        // Initialise entries to stay
        seq[i] = -1;
    }

    int last_state = argmaxf(score, n + 2);
    float logscore = score[last_state];
    for(size_t i=0 ; i < nblock ; i++){
        const size_t ri = nblock - i - 1;
        const int state = traceback->data.f[ri * traceback->stride + last_state];
        if(state >= 0){
            seq[ri + 1] = last_state;
            last_state = state;
        }
    }
    seq[0] = last_state;

    //  Transcode start to stay
    for(size_t i=0 ; i < nblock ; i++){
        if(seq[i] == n){
            seq[i] = -1;
        } else {
            break;
        }
    }
    //  Transcode end to stay
    for(int i=nblock ; i >= 0 ; i--){
        if(seq[i] == n + 1){
            seq[i] = -1;
        } else {
            break;
        }
    }

    return logscore;
}

float argmax_decoder(const_scrappie_matrix logpost, int *seq) {
    RETURN_NULL_IF(NULL == logpost, NAN);
    RETURN_NULL_IF(NULL == seq, NAN);

    const int nblock = logpost->nc;
    const int nstate = logpost->nr;
    assert(nstate > 0);
    const int stride = logpost->stride;
    assert(stride > 0);
    int offset;

    float logscore = 0;
    int imax;
    for (int blk = 0; blk < nblock; blk++) {
        offset = blk * stride;
        imax = argmaxf(logpost->data.f + offset, nstate);
        logscore += logpost->data.f[offset + imax];
        seq[blk] = (imax == nstate - 1) ? -1 : imax;
    }

    return logscore;
}

float decode_transducer(const_scrappie_matrix logpost, float stay_pen, float skip_pen, float local_pen, int *seq,
                        bool allow_slip) {
    float logscore = NAN;
    RETURN_NULL_IF(NULL == logpost, logscore);
    RETURN_NULL_IF(NULL == seq, logscore);

    const int nblock = logpost->nc;
    const int nstate = logpost->nr;
    const int nhistory = nstate - 1;
    assert((nhistory % 4) == 0);
    const int32_t nhistoryq = nhistory / 4;
    const __m128i nhistoryqv = _mm_set1_epi32(nhistoryq);
    assert((nhistoryq % 4) == 0);
    const int32_t nhistoryqq = nhistoryq / 4;
    const __m128i nhistoryqqv = _mm_set1_epi32(nhistoryqq);
    assert((nhistoryqq % 4) == 0);
    const int32_t nhistoryqqq = nhistoryqq / 4;
    const __m128i nhistoryqqqv = _mm_set1_epi32(nhistoryqqq);
    if (allow_slip) {
        assert((nhistoryqqq % 4) == 0);
    }
    //  Forwards memory + traceback
    scrappie_matrix score = make_scrappie_matrix(nhistory + 2, 1);
    scrappie_matrix prev_score = make_scrappie_matrix(nhistory + 2, 1);
    scrappie_matrix tmp = make_scrappie_matrix(nhistory, 1);
    scrappie_imatrix itmp = make_scrappie_imatrix(nhistory, 1);
    scrappie_imatrix traceback = make_scrappie_imatrix(nhistory + 2, nblock);
    if(NULL == score || NULL == prev_score || NULL == tmp || NULL == itmp || NULL == traceback){
        goto cleanup;
    }

    //  Initialise
    for (int i = 0; i < nhistoryq; i++) {
        score->data.v[i] = _mm_set1_ps(-BIG_FLOAT);
    }
    score->data.f[nhistory] = 0.0f;
    score->data.f[nhistory + 1] = -BIG_FLOAT;

    //  Forwards Viterbi iteration
    for (int blk = 0; blk < nblock; blk++) {
        const size_t offsetTq = blk * traceback->nrq;
        const size_t offsetT = offsetTq * 4;
        const size_t offsetPq = blk * logpost->nrq;
        const size_t offsetP = offsetPq * 4;
        // Swap score and previous score
        {
            scrappie_matrix tmptr = score;
            score = prev_score;
            prev_score = tmptr;
        }

        // Stay
        const __m128 stay_m128 =
            _mm_set1_ps(logpost->data.f[offsetP + nhistory] - stay_pen);
        const __m128i negone_m128i = _mm_set1_epi32(-1);
        for (int i = 0; i < nhistoryq; i++) {
            // Traceback for stay is negative
            score->data.v[i] = prev_score->data.v[i] + stay_m128;
            traceback->data.v[offsetTq + i] = negone_m128i;
        }

        // Step
        // Following three loops find maximum over suffix and record index
        for (int i = 0; i < nhistoryqq; i++) {
            tmp->data.v[i] = prev_score->data.v[i];
            itmp->data.v[i] = _mm_setzero_si128();
        }
        for (int r = 1; r < NBASE; r++) {
            const size_t offset = r * nhistoryqq;
            const __m128i itmp_fill = _mm_set1_epi32(r);
            for (int i = 0; i < nhistoryqq; i++) {
                __m128i mask = _mm_castps_si128(_mm_cmplt_ps(tmp->data.v[i],
                                                             prev_score->data.
                                                             v[offset + i]));
                tmp->data.v[i] =
                    _mm_max_ps(tmp->data.v[i], prev_score->data.v[offset + i]);
                itmp->data.v[i] =
                    _mm_or_si128(_mm_andnot_si128(mask, itmp->data.v[i]),
                                 _mm_and_si128(mask, itmp_fill));
            }
        }
        const __m128i c0123_m128i = _mm_setr_epi32(0, 1, 2, 3);
        for (int i = 0; i < nhistoryqq; i++) {
            itmp->data.v[i] =
                _mm_add_epi32(_mm_mullo_epi32(itmp->data.v[i], nhistoryqv),
                              _mm_add_epi32(c0123_m128i,
                                            _mm_set1_epi32(i * 4)));
        }

        for (int pref = 0; pref < nhistoryq; pref++) {
            const size_t i = pref;
            const __m128 step_score =
                logpost->data.v[offsetPq + i] + _mm_set1_ps(tmp->data.f[pref]);
            __m128i mask =
                _mm_castps_si128(_mm_cmplt_ps(score->data.v[i], step_score));
            score->data.v[i] = _mm_max_ps(score->data.v[i], step_score);
            traceback->data.v[offsetTq + i] =
                _mm_or_si128(_mm_andnot_si128
                             (mask, traceback->data.v[offsetTq + i]),
                             _mm_and_si128(mask,
                                           _mm_set1_epi32(itmp->data.f[pref])));
        }

        // Skip
        const __m128 skip_penv = _mm_set1_ps(skip_pen);
        for (int i = 0; i < nhistoryqqq; i++) {
            tmp->data.v[i] = prev_score->data.v[i];
            itmp->data.v[i] = _mm_setzero_si128();
        }
        for (int r = 1; r < NBASE * NBASE; r++) {
            const size_t offset = r * nhistoryqqq;
            const __m128i itmp_fill = _mm_set1_epi32(r);
            for (int i = 0; i < nhistoryqqq; i++) {
                __m128i mask = _mm_castps_si128(_mm_cmplt_ps(tmp->data.v[i],
                                                             prev_score->data.
                                                             v[offset + i]));
                tmp->data.v[i] =
                    _mm_max_ps(tmp->data.v[i], prev_score->data.v[offset + i]);
                itmp->data.v[i] =
                    _mm_or_si128(_mm_andnot_si128(mask, itmp->data.v[i]),
                                 _mm_and_si128(mask, itmp_fill));
            }
        }
        for (int i = 0; i < nhistoryqqq; i++) {
            itmp->data.v[i] =
                _mm_add_epi32(_mm_mullo_epi32(itmp->data.v[i], nhistoryqqv),
                              _mm_add_epi32(c0123_m128i,
                                            _mm_set1_epi32(i * 4)));
        }
        for (int pref = 0; pref < nhistoryqq; pref++) {
            for (int i = 0; i < NBASE; i++) {
                const size_t oi = pref * NBASE + i;
                // This cycling through prefixes
                const __m128 skip_score = logpost->data.v[offsetPq + oi]
                    + _mm_set1_ps(tmp->data.f[pref])
                    - skip_penv;
                __m128i mask =
                    _mm_castps_si128(_mm_cmplt_ps
                                     (score->data.v[oi], skip_score));
                score->data.v[oi] = _mm_max_ps(score->data.v[oi], skip_score);
                traceback->data.v[offsetTq + oi] =
                    _mm_or_si128(_mm_andnot_si128
                                 (mask, traceback->data.v[offsetTq + oi]),
                                 _mm_and_si128(mask,
                                               _mm_set1_epi32(itmp->
                                                              data.f[pref])));
            }
        }

        // Slip
        if (allow_slip) {
            const int32_t nhistoryqqqq = nhistoryqqq / 4;
            const __m128 slip_penv = _mm_set1_ps(2.0 * skip_pen);
            for (int i = 0; i < nhistoryqqqq; i++) {
                tmp->data.v[i] = prev_score->data.v[i];
                itmp->data.v[i] = _mm_setzero_si128();
            }
            for (int r = 1; r < NBASE * NBASE * NBASE; r++) {
                const size_t offset = r * nhistoryqqqq;
                const __m128i itmp_fill = _mm_set1_epi32(r);
                for (int i = 0; i < nhistoryqqqq; i++) {
                    __m128i mask = _mm_castps_si128(_mm_cmplt_ps(tmp->data.v[i],
                                                                 prev_score->
                                                                 data.v[offset +
                                                                        i]));
                    tmp->data.v[i] =
                        _mm_max_ps(tmp->data.v[i],
                                   prev_score->data.v[offset + i]);
                    itmp->data.v[i] =
                        _mm_or_si128(_mm_andnot_si128(mask, itmp->data.v[i]),
                                     _mm_and_si128(mask, itmp_fill));
                }
            }
            for (int i = 0; i < nhistoryqqqq; i++) {
                itmp->data.v[i] =
                    _mm_add_epi32(_mm_mullo_epi32
                                  (itmp->data.v[i], nhistoryqqqv),
                                  _mm_add_epi32(c0123_m128i,
                                                _mm_set1_epi32(i * 4)));
            }
            for (int pref = 0; pref < nhistoryqqq; pref++) {
                for (int i = 0; i < NBASE * NBASE; i++) {
                    const size_t oi = pref * NBASE * NBASE + i;
                    // This cycling through prefixes
                    const __m128 skip_score = logpost->data.v[offsetPq + oi]
                        + _mm_set1_ps(tmp->data.f[pref])
                        - slip_penv;
                    __m128i mask =
                        _mm_castps_si128(_mm_cmplt_ps
                                         (score->data.v[oi], skip_score));
                    score->data.v[oi] =
                        _mm_max_ps(score->data.v[oi], skip_score);
                    traceback->data.v[offsetTq + oi] =
                        _mm_or_si128(_mm_andnot_si128
                                     (mask, traceback->data.v[offsetTq + oi]),
                                     _mm_and_si128(mask,
                                                   _mm_set1_epi32(itmp->data.f
                                                                  [pref])));
                }
            }
        }

        // Remain in start state (stay or local penalty)
        score->data.f[nhistory] = prev_score->data.f[nhistory]
                                + fmaxf(-local_pen, logpost->data.f[offsetP + nhistory] - stay_pen);
        traceback->data.f[offsetT + nhistory] = nhistory;
        // Exit start state
        for(int hst=0 ; hst < nhistory ; hst++){
            const float scoref = prev_score->data.f[nhistory] + logpost->data.f[offsetP + hst];
            if(scoref > score->data.f[hst]){
                score->data.f[hst] = scoref;
                traceback->data.f[offsetT + hst] = nhistory;
            }
        }

        // Remain in end state (stay or local penalty)
        score->data.f[nhistory + 1] = prev_score->data.f[nhistory + 1]
                                    + fmax(-local_pen, logpost->data.f[offsetP + nhistory] - stay_pen);
        traceback->data.f[offsetT + nhistory + 1] = nhistory + 1;
        // Enter end state
        for(int hst=0 ; hst < nhistory ; hst++){
            const float scoref = prev_score->data.f[hst] - local_pen;
            if(scoref > score->data.f[nhistory + 1]){
                score->data.f[nhistory + 1] = scoref;
                traceback->data.f[offsetT + nhistory + 1] = hst;
            }
        }
    }

    //  Viterbi traceback
    logscore = viterbi_local_backtrace(score->data.f, nhistory, traceback, seq);

    assert(validate_ivector(seq, nblock, -1, nhistory - 1, __FILE__, __LINE__));

cleanup:
    traceback = free_scrappie_imatrix(traceback);
    itmp = free_scrappie_imatrix(itmp);
    tmp = free_scrappie_matrix(tmp);
    prev_score = free_scrappie_matrix(prev_score);
    score = free_scrappie_matrix(score);

    return logscore;
}

int overlap(int k1, int k2, int nkmer) {
    // Neither k1 nor k2 can be stays
    assert(k1 >= 0);
    assert(k2 >= 0);

    int kmer_mask = nkmer - 1;
    int overlap = 0;
    do {
        kmer_mask >>= 2;
        k1 &= kmer_mask;
        k2 >>= 2;
        overlap += 1;
    } while (k1 != k2);

    return overlap;
}

size_t position_highest_bit(size_t x) {
    size_t i = 0;
    for (; x != 0; i++, x >>= 1) ;
    return i;
}

size_t first_nonnegative(const int *seq, size_t n) {
    RETURN_NULL_IF(NULL == seq, n);
    size_t st;
    for (st = 0; st < n && seq[st] < 0; st++) ;
    return st;
}

bool iskmerhomopolymer(int kmer, int klen) {
    const int b = kmer & 3;

    for (int k = 1; k < klen; k++) {
        kmer >>= 2;
        if (b != (kmer & 3)) {
            return false;
        }
    }

    return true;
}

const char base_lookup[4] = { 'A', 'C', 'G', 'T' };


// This method assumes a model which outputs single bases
char *ctc_remove_stays_and_repeats(const int *seq, size_t n, int *pos) {
    RETURN_NULL_IF(NULL == seq, NULL);
    RETURN_NULL_IF(NULL == pos, NULL);

    //  Determine length of final sequence
    int length = 0;
    if (seq[0] >= 0) { length += 1; }
    for (size_t blk = 1; blk < n; blk++) {
        if (seq[blk] >= 0 && seq[blk - 1] != seq[blk]) {
            length += 1;
        }
    }

    // Initialise basespace sequence with terminating null
    char *bases = calloc(length + 1, sizeof(char));
    RETURN_NULL_IF(NULL == bases, NULL);

    int loc = -1;
    int prev = -2;

    for (size_t blk = 0; blk < n; blk++) {
        int this = seq[blk];
        if (this >= 0 && this != prev) {
            bases[loc] = base_lookup[this];
            prev = this;
            loc += 1;
        }
        if (NULL != pos) {
            pos[blk] = loc;
        }
     }

    return bases;
}

char *overlapper(const int *seq, size_t n, int nkmer, int *pos) {
    RETURN_NULL_IF(NULL == seq, NULL);
    const size_t kmer_len = position_highest_bit(nkmer) / 2;

    //  Determine length of final sequence
    size_t length = kmer_len;
    // Find first non-stay
    const size_t st = first_nonnegative(seq, n);
    RETURN_NULL_IF(st == n, NULL);

    int kprev = seq[st];
    for (size_t k = st + 1; k < n; k++) {
        if (seq[k] < 0) {
            // Short-cut stays
            continue;
        }
        assert(seq[k] >= 0);
        length += overlap(kprev, seq[k], nkmer);
        kprev = seq[k];
        assert(kprev >= 0);
    }

    // Initialise basespace sequence with terminating null
    char *bases = calloc(length + 1, sizeof(char));
    RETURN_NULL_IF(NULL == bases, NULL);

    // Fill with first kmer
    for (size_t kmer = seq[st], k = 1; k <= kmer_len; k++) {
        size_t b = kmer & 3;
        kmer >>= 2;
        bases[kmer_len - k] = base_lookup[b];
    }

    if(NULL != pos){
        // Initial pos array if required -- start at beginning
        pos[0] = 0;
    }
    for (size_t last_idx = kmer_len - 1, kprev = seq[st], k = st + 1; k < n; k++) {
        if (seq[k] < 0) {
            // Short-cut stays
            if (NULL != pos) {
                pos[k] = pos[k - 1];
            }
            continue;
        }
        int ol = overlap(kprev, seq[k], nkmer);
        if (NULL != pos) {
            pos[k] = pos[k - 1] + ol;
        }
        kprev = seq[k];

        for (size_t kmer = seq[k], i = 0; i < ol; i++) {
            size_t b = kmer & 3;
            kmer >>= 2;
            bases[last_idx + ol - i] = base_lookup[b];
        }
        last_idx += ol;
    }

    return bases;
}

int calibrated_dwell(int hdwell, int inhomo, const dwell_model dm) {
    const int b = inhomo & 3;
    return (int)roundf(((float)hdwell - dm.base_adj[b]) / dm.scale);
}

char *dwell_corrected_overlapper(const int *seq, const int *dwell, int n,
                                 int nkmer, const dwell_model dm) {
    RETURN_NULL_IF(NULL == seq, NULL);
    RETURN_NULL_IF(NULL == dwell, NULL);
    const int kmer_len = position_highest_bit(nkmer) / 2;

    //  Determine length of final sequence
    int length = kmer_len;
    //  Find first non-stay
    const int st = first_nonnegative(seq, n);
    assert(st != n);
    int kprev = seq[st];
    int inhomo = -1;
    int hdwell = 0;
    for (int k = st + 1; k < n; k++) {
        /* Simple state machine tagged by inhomo
         * inhomo < 0  --  not in a homopolymer
         * inhomo >= 0  -- in homopolymer and value is homopolymer state
         */
        if (seq[k] < 0) {
            // State is stay.  Short circuit rest of logic
            if (inhomo >= 0) {
                // Accumate dwell if in homopolymer
                hdwell += dwell[k];
            }
            continue;
        }

        if (seq[k] == inhomo) {
            // Not stay but still in same homopolymer
            hdwell += dwell[k];
            continue;
        }

        if (inhomo >= 0) {
            // Changed state.  Leave homopolymer
            length += calibrated_dwell(hdwell, inhomo, dm);
            inhomo = -1;
            hdwell = 0;
        }

        assert(seq[k] >= 0);
        length += overlap(kprev, seq[k], nkmer);
        kprev = seq[k];
        assert(kprev >= 0);

        if (iskmerhomopolymer(kprev, kmer_len)) {
            // Entered a new homopolymer
            inhomo = kprev;
            hdwell = dwell[k];
        }
    }

    if (inhomo >= 0) {
        //  Correction for final homopolymer
        length += calibrated_dwell(hdwell, inhomo, dm);
    }
    // Initialise basespace sequence with terminating null
    char *bases = calloc(length + 1, sizeof(char));
    // Fill with first kmer
    for (int kmer = seq[st], k = 1; k <= kmer_len; k++) {
        int b = kmer & 3;
        kmer >>= 2;
        bases[kmer_len - k] = base_lookup[b];
    }

    int last_idx = kmer_len - 1;
    inhomo = -1;
    hdwell = 0;
    for (int kprev = seq[st], k = st + 1; k < n; k++) {
        if (seq[k] < 0) {
            // State is stay.
            if (inhomo >= 0) {
                // Accumate dwell if in homopolymer
                hdwell += dwell[k];
            }
            continue;
        }

        if (seq[k] == inhomo) {
            // Not stay but still in same homopolymer
            hdwell += dwell[k];
            continue;
        }

        if (inhomo >= 0) {
            // Changed state.  Leave homopolymer
            int hlen = calibrated_dwell(hdwell, inhomo, dm);
            char hbase = base_lookup[inhomo & 3];
            for (int i = 0; i < hlen; i++, last_idx++) {
                bases[last_idx + 1] = hbase;
            }
            inhomo = -1;
            hdwell = 0;
        }

        int ol = overlap(kprev, seq[k], nkmer);
        kprev = seq[k];

        for (int kmer = seq[k], i = 0; i < ol; i++) {
            int b = kmer & 3;
            kmer >>= 2;
            bases[last_idx + ol - i] = base_lookup[b];
        }
        last_idx += ol;

        if (iskmerhomopolymer(kprev, kmer_len)) {
            // Entered a new homopolymer
            inhomo = kprev;
            hdwell += dwell[k];
        }
    }

    if (inhomo >= 0) {
        //  Correction for final homopolymer
        int hlen = calibrated_dwell(hdwell, inhomo, dm);
        char hbase = base_lookup[inhomo & 3];
        for (int i = 0; i < hlen; i++, last_idx++) {
            bases[last_idx] = hbase;
        }
    }
    if (last_idx + 1 != length) {
        printf("last_idx %d length %d\n\n", last_idx, length);
        assert(last_idx + 1 == length);
    }

    return bases;
}

char *homopolymer_dwell_correction(const event_table et, const int *seq,
                                   size_t nstate, size_t basecall_len) {
    RETURN_NULL_IF(NULL == et.event, NULL);
    RETURN_NULL_IF(NULL == seq, NULL);

    const int nev = et.end - et.start;
    const int evoffset = et.start;
    assert(et.event[nev + evoffset - 1].start >= et.event[evoffset].start);

    int *dwell = calloc(nev, sizeof(int));
    RETURN_NULL_IF(NULL == dwell, NULL);

    for (int ev = 0; ev < nev; ev++) {
        dwell[ev] = et.event[ev + evoffset].length;
    }

    /* Calibrate scaling factor for homopolymer estimation.
     * Simple mean of the dwells of all 'step' movements in
     * the basecall.  Steps within homopolymers are ignored.
     * A more complex calibration could be used.
     */
    int tot_step_dwell = 0;
    int nstep = 0;
    for (int ev = 0, ppos = -2, evdwell = 0, pstate = -1; ev < nev; ev++) {
        // Sum over dwell of all steps excluding those within homopolymers
        if (et.event[ev + evoffset].pos == ppos) {
            // Stay. Accumulate dwell
            evdwell += dwell[ev];
            continue;
        }

        if (et.event[ev + evoffset].pos == ppos + 1
            && et.event[ev + evoffset].state != pstate) {
            // Have a step that is not within a homopolymer
            tot_step_dwell += evdwell;
            nstep += 1;
        }

        evdwell = dwell[ev];
        ppos = et.event[ev + evoffset].pos;
        pstate = et.event[ev + evoffset].state;
    }

    // Estimate of scale with a prior with weight equal to a single observation.
    const float start_delta = (float)(et.event[nev + evoffset - 1].start
                                    - et.event[evoffset          ].start);
    const float prior_scale =
        (et.event[nev + evoffset - 1].length + start_delta) / (float)basecall_len;
    const float homo_scale = (prior_scale + tot_step_dwell) / (1.0 + nstep);
    const dwell_model dm = { homo_scale, {0.0f, 0.0f, 0.0f, 0.0f} };

    char *newbases =
        dwell_corrected_overlapper(seq, dwell, nev, nstate - 1, dm);

    free(dwell);

    return newbases;
}

void colmaxf(float * x, int nr, int nc, int * idx){
    assert(nr > 0);
    assert(nc > 0);
    RETURN_NULL_IF(NULL == x,);
    RETURN_NULL_IF(NULL == idx,);

    for(int r=0 ; r < nr ; r++){
        // Initialise
        idx[r] = 0;
    }

    for(int c=1 ; c < nc ; c++){
        const size_t offset2 = c * nr;
        for(int r=0 ; r<nr ; r++){
            if(x[offset2 + r] > x[idx[r] * nr + r]){
                idx[r] = c;
            }
        }
    }
}

float sloika_viterbi(const_scrappie_matrix logpost, float stay_pen, float skip_pen, float local_pen, int *seq){
    float logscore = NAN;
    RETURN_NULL_IF(NULL == logpost, logscore);
    RETURN_NULL_IF(NULL == seq, logscore);

    const int nbase = 4;
    const size_t nblock = logpost->nc;
    const size_t nst = logpost->nr;
    const size_t nhst = nst - 1;
    const size_t nstep = nbase;
    const size_t nskip = nbase * nbase;
    assert(nhst % nstep == 0);
    assert(nhst % nskip == 0);
    const size_t step_rem = nhst / nstep;
    const size_t skip_rem = nhst / nskip;

    float * cscore = calloc(nhst + 2, sizeof(float));
    float * pscore = calloc(nhst + 2, sizeof(float));
    int * step_idx = calloc(step_rem, sizeof(int));
    int * skip_idx = calloc(skip_rem, sizeof(int));
    scrappie_imatrix traceback = make_scrappie_imatrix(nhst + 2, nblock);
    if(NULL != cscore && NULL != pscore && NULL != step_idx && NULL != skip_idx && NULL != traceback){
        // Initialise -- must begin in start state
        for(size_t i=0 ; i < (nhst + 2) ; i++){
            cscore[i] = -BIG_FLOAT;
        }
        cscore[nhst] = 0.0f;

        //  Forwards Viterbi
        for(size_t i=0 ; i < nblock ; i++){
            const size_t lpoffset = i * logpost->stride;
            const size_t toffset = i * traceback->stride;
            {  // Swap vectors
                float * tmp = pscore;
                pscore = cscore;
                cscore = tmp;
            }

            //  Step indices
            colmaxf(pscore, step_rem, nstep, step_idx);
            //  Skip indices
            colmaxf(pscore, skip_rem, nskip, skip_idx);

            // Update score for step and skip
            for(size_t hst=0 ; hst < nhst ; hst++){
                size_t step_prefix = hst / nstep;
                size_t skip_prefix = hst / nskip;
                size_t step_hst = step_prefix + step_idx[step_prefix] * step_rem;
                size_t skip_hst = skip_prefix + skip_idx[skip_prefix] * skip_rem;

                float step_score = pscore[step_hst];
                float skip_score = pscore[skip_hst] - skip_pen;
                if(step_score > skip_score){
                    // Arbitrary assumption here!  Should be >= ?
                    cscore[hst] = step_score;
                    traceback->data.f[toffset + hst] = step_hst;
                } else {
                    cscore[hst] = skip_score;
                    traceback->data.f[toffset + hst] = skip_hst;
                }
                cscore[hst] += logpost->data.f[lpoffset + hst];
            }

            // Stay
            for(size_t hst=0 ; hst < nhst ; hst++){
                const float score = pscore[hst] + logpost->data.f[lpoffset + nhst] - stay_pen;
                if(score > cscore[hst]){
                    // Arbitrary assumption here!  Should be >= ?
                    cscore[hst] = score;
                    traceback->data.f[toffset + hst] = -1;
                }
            }

            // Remain in start state -- local penalty or stay
            cscore[nhst] = pscore[nhst] + fmaxf(-local_pen, logpost->data.f[lpoffset + nhst] - stay_pen);
            traceback->data.f[toffset + nhst] = nhst;
            // Exit start state
            for(size_t hst=0 ; hst < nhst ; hst++){
                const float score = pscore[nhst] + logpost->data.f[lpoffset + hst];
                if(score > cscore[hst]){
                    cscore[hst] = score;
                    traceback->data.f[toffset + hst] = nhst;
                }
            }

            // Remain in end state -- local penalty or stay
            cscore[nhst + 1] = pscore[nhst + 1] + fmaxf(-local_pen, logpost->data.f[lpoffset + nhst] - stay_pen);
            traceback->data.f[toffset + nhst + 1] = nhst + 1;
            // Enter end state
            for(size_t hst=0 ; hst < nhst ; hst++){
                const float score = pscore[hst] - local_pen;
                if(score > cscore[nhst + 1]){
                    cscore[nhst + 1] = score;
                    traceback->data.f[toffset + nhst + 1] = hst;
                }
            }

        }

        logscore = viterbi_local_backtrace(cscore, nhst, traceback, seq);
    }

    traceback = free_scrappie_imatrix(traceback);
    free(skip_idx);
    free(step_idx);
    free(pscore);
    free(cscore);

    return logscore;
}

float decode_crf(const_scrappie_matrix trans, int * path){
    RETURN_NULL_IF(NULL == trans, NAN);
    RETURN_NULL_IF(NULL == path, NAN);

    const size_t nblk = trans->nc;
    const size_t nstate = roundf(sqrtf((float)trans->nr));
    assert(nstate * nstate == trans->nr);
    float * mem = calloc(2 * nstate, sizeof(float));
    scrappie_imatrix tb = make_scrappie_imatrix(nstate, nblk);
    if(NULL == mem || NULL == tb){
        tb = free_scrappie_imatrix(tb);
        free(mem);
        return NAN;
    }

    float * curr = mem;
    float * prev = mem + nstate;


    //  Forwards Viterbi pass
    for(size_t blk=0 ; blk < nblk ; blk++){
        const size_t offset = blk * trans->stride;
        const size_t tboffset = blk * tb->stride;
        {   // Swap
            float * tmp = curr;
            curr = prev;
            prev = tmp;
        }

        for(size_t st1=0 ; st1 < nstate ; st1++){
	    // st1 is to-state (in -ACGT)
            const size_t offsetS = offset + st1 * nstate;
            curr[st1] = trans->data.f[offsetS + 0] + prev[0];
            tb->data.f[tboffset + st1] = 0;
            for(size_t st2=1 ; st2 < nstate ; st2++){
		// st2 is from-state (in -ACGT)
                const float score = trans->data.f[offsetS + st2] + prev[st2];
                if(score > curr[st1]){
                    curr[st1] = score;
                    tb->data.f[tboffset + st1] = st2;
                }
            }
        }
    }

    //  Traceback
    const float score = valmaxf(curr, nstate);
    path[nblk] = argmaxf(curr, nstate);
    for(size_t blk=nblk ; blk > 0 ; blk--){
        const size_t offset = (blk - 1) * tb->stride;
        path[blk - 1] = tb->data.f[offset + path[blk]];
    }

    tb = free_scrappie_imatrix(tb);
    free(mem);

    return score;
}

char * crfpath_to_basecall(int const * path, size_t npos, int * pos){
    RETURN_NULL_IF(NULL == path, NULL);
    RETURN_NULL_IF(NULL == pos, NULL);

    int nbase = 0;
    for(size_t pos=0 ; pos < npos ; pos++){
        if(path[pos] < NBASE){
            nbase += 1;
        }
    }

    char * basecall = calloc(nbase + 1, sizeof(char));
    RETURN_NULL_IF(NULL == basecall, NULL);

    for(size_t pos=0, bpos=0 ; pos < npos ; pos++){
        if(path[pos] < NBASE){
            assert(bpos < nbase);
            basecall[bpos] = base_lookup[path[pos]];
            bpos += 1;
        }
    }

    return basecall;
}


/**  Posterior over states at each block
 *
 *  @param trans.  Constant scrappie matrix containing the (25) energies
 *  for each block.  (order ACGT-, from state in minor, to state major).
 *
 *  @returns scrappie matrix containing the posterior for nblk + 1
 **/
scrappie_matrix posterior_crf(const_scrappie_matrix trans){
    RETURN_NULL_IF(NULL == trans, NULL);

    const size_t nstate = roundf(sqrtf((float)trans->nr));
    assert(nstate * nstate == trans->nr);
    const size_t nblk = trans->nc;

    scrappie_matrix post = make_scrappie_matrix(nstate, nblk + 1);
    RETURN_NULL_IF(NULL == post, NULL);


    //  Forwards pass
    for(size_t st=0 ; st < nstate ; st++){
        // Initialisation
        post->data.f[st] = 0.0f;
    }
    for(size_t blk=0 ; blk < nblk ; blk++){
        const size_t offset = blk * trans->stride;
        const size_t offset_post = blk * post->stride;

        const float * prev = post->data.f + offset_post;
        float * curr = post->data.f + offset_post + post->stride;

        for(size_t st1=0 ; st1 < nstate ; st1++){
            const size_t offsetS = offset + st1 * nstate;
            curr[st1] = trans->data.f[offsetS + 0] + prev[0];
            for(size_t st2=1 ; st2 < nstate ; st2++){
                curr[st1] = logsumexpf(curr[st1], trans->data.f[offsetS + st2] + prev[st2]);
            }
        }
    }

    // Backwards pass
    float * tmpmem = malloc(2 * nstate * sizeof(float));
    float * prev = tmpmem;
    float * curr = tmpmem + nstate;
    for(size_t st=0 ; st < nstate ; st++){
        // Initialisation
        curr[st] = 0.0f;
    }
    // Normalisation of last block
    float tot = 0.0f;
    for(size_t st=0 ; st < nstate ; st++){
        tot = logsumexpf(tot, post->data.f[nblk * post->stride + st]);
    }
    for(size_t st=0 ; st < nstate ; st++){
        post->data.f[nblk * post->stride + st] = expf(post->data.f[nblk * post->stride + st] - tot);
    }
    for(size_t blk=nblk ; blk > 0 ; blk--){
        const size_t blkm1 = blk - 1;
        const size_t offset = blkm1 * trans->stride;
        const size_t offset_post = blkm1 * post->stride;

        {   // Swap
            float * tmp = curr;
            curr = prev;
            prev = tmp;
        }

        for(size_t st=0 ; st < nstate ; st++){
            curr[st] = trans->data.f[offset + st] + prev[0];
        }
        for(size_t st1=1 ; st1 < nstate ; st1++){
            const size_t offsetS = offset + st1 * nstate;
            for(size_t st2=0 ; st2 < nstate ; st2++){
                curr[st2] = logsumexpf(curr[st2], trans->data.f[offsetS + st2] + prev[st1]);
            }
        }

        // Normalisation
        float tot = 0.0f;
        for(size_t st=0 ; st < nstate ; st++){
            post->data.f[offset_post + st] += curr[st];
            tot = logsumexpf(tot, post->data.f[offset_post + st]);
        }
        for(size_t st=0 ; st < nstate ; st++){
            post->data.f[offset_post + st] = expf(post->data.f[offset_post + st] - tot);
        }
    }

    free(tmpmem);


    return post;
}



static float LARGE_VAL = 1e30f;

/**  Map a signal to a predicted squiggle using variant of dynamic time-warping
 *
 *   Uses a local mapping so not all of signal may be mapped and not every position of the
 *   predicted squiggle may be mapped to.
 *
 *   @param signal `raw_table` containing signal to map
 *   @param rate Rate of translocation relative to squiggle model
 *   @param params `scrappie_matrix` containing predicted squiggle
 *   @param prob_back Probability of a backward movement.
 *   @param local_pen Penalty for local mapping (stay in start or ends state)
 *   @param skip_pen  Penalty for skipping
 *   @param minscore Minimum possible emission for
 *   @param path [OUT] An array containing path.  Length equal to that of FULL signal
 *   @param fwd [OUT]
 *
 *   @returns score
 **/
float squiggle_match_viterbi(const raw_table signal, float rate, const_scrappie_matrix params,
                             float prob_back, float local_pen, float skip_pen, float minscore,
                             int32_t * path_padded){
    RETURN_NULL_IF(NULL == signal.raw, NAN);
    RETURN_NULL_IF(NULL == params, NAN);
    RETURN_NULL_IF(NULL == path_padded, NAN);
    assert(signal.start < signal.end);
    assert(signal.end <= signal.n);
    assert(rate > 0.0f);
    assert(prob_back >= 0.0f && prob_back <= 1.0f);

    float final_score = NAN;

    const float * rawsig = signal.raw + signal.start;
    const size_t nsample = signal.end - signal.start;
    const size_t ldp = params->stride;
    const size_t npos = params->nc;
    const size_t nfstate = npos + 2;
    const size_t nstate = npos + nfstate;

    const float move_back_pen = logf(prob_back);
    const float stay_in_back_pen = logf(0.5f);
    const float move_from_back_pen = logf(0.5f);

    float * move_pen = calloc(nfstate, sizeof(float));
    float * fwd = calloc(2 * nstate, sizeof(float));
    float * scale = calloc(npos, sizeof(float));
    float * stay_pen = calloc(nfstate, sizeof(float));
    int32_t * traceback = calloc(nsample * nstate, sizeof(int32_t));
    if(NULL == move_pen || NULL == fwd || NULL == scale ||
       NULL == stay_pen || NULL == traceback){
        goto clean;
    }

    for(size_t pos=0 ; pos < npos ; pos++){
        //  Create array of scales
        scale[pos] = expf(params->data.f[pos * ldp + 1]);
    }
    for(size_t i=0 ; i < signal.n ; i++){
        path_padded[i] = -1;
    }

    //  Only deal with part of path that corresponds to trimmed signal
    int32_t * path = path_padded + signal.start;


    {
        const float lograte = logf(rate);
        float mean_move_pen = 0.0f;
        float mean_stay_pen = 0.0f;
        for(size_t pos=0 ; pos < npos ; pos++){
            const float mp = (1.0f - prob_back) * plogisticf(params->data.f[pos * ldp + 2] + lograte);
            move_pen[pos + 1] = logf(mp);
            stay_pen[pos + 1] = log1pf(-mp - prob_back);
            mean_move_pen += move_pen[pos + 1];
            mean_stay_pen += stay_pen[pos + 1];
        }
        mean_move_pen /= npos;
        mean_stay_pen /= npos;

        move_pen[0] = mean_move_pen;
        move_pen[nfstate - 1] = mean_move_pen;
        stay_pen[0] = mean_stay_pen;
        stay_pen[nfstate - 1] = mean_stay_pen;
    }

    for(size_t st=0 ; st < nstate ; st++){
        // States are start .. positions .. end
        fwd[st] = -LARGE_VAL;
    }
    // Must begin in start state
    fwd[0] = 0.0;


    for(size_t sample=0 ; sample < nsample ; sample++){
        const size_t fwd_prev_off = (sample % 2) * nstate;
        const size_t fwd_curr_off = ((sample + 1) % 2) * nstate;
        const size_t tr_off = sample * nstate;

        for(size_t st=0 ; st < nfstate ; st++){
            //  Stay in start, end or normal position
            fwd[fwd_curr_off + st] = fwd[fwd_prev_off + st] + stay_pen[st];
            traceback[tr_off + st] = st;
        }
        for(size_t st=0 ; st < npos ; st++){
            //  Stay in back position
            const size_t idx = nfstate + st;
            fwd[fwd_curr_off + idx] = fwd[fwd_prev_off + idx] + stay_in_back_pen;
            traceback[tr_off + idx] = idx;
        }
        for(size_t st=1 ; st < nfstate ; st++){
            //  Move to next position
            const float step_score = fwd[fwd_prev_off + st - 1] + move_pen[st - 1];
            if(step_score > fwd[fwd_curr_off + st]){
                fwd[fwd_curr_off + st] = step_score;
                traceback[tr_off + st] = st - 1;
            }
        }
        for(size_t st=2 ; st < nfstate ; st++){
            //  Skip to next position
            const float skip_score = fwd[fwd_prev_off + st - 2] + move_pen[st - 2] - skip_pen;
            if(skip_score > fwd[fwd_curr_off + st]){
                fwd[fwd_curr_off + st] = skip_score;
                traceback[tr_off + st] = st - 2;
            }
        }
        for(size_t destpos=1 ; destpos < npos ; destpos++){
            const size_t destst = destpos + 1;
            //  Move from start into sequence
            const float score = fwd[fwd_prev_off] + move_pen[0] - local_pen * destpos;
            if(score > fwd[fwd_curr_off + destst]){
                fwd[fwd_curr_off + destst] = score;
                traceback[tr_off + destst] = 0;
            }
        }
        for(size_t origpos=0 ; origpos < (npos - 1) ; origpos++){
            const size_t destst = nfstate - 1;
            const size_t origst = origpos + 1;
            const size_t deltapos = npos - 1 - origpos;
            //  Move from sequence into end
            const float score = fwd[fwd_prev_off + origst] + move_pen[origst] - local_pen * deltapos;
            if(score > fwd[fwd_curr_off + destst]){
                fwd[fwd_curr_off + destst] = score;
                traceback[tr_off + destst] = origst;
            }
        }
        for(size_t st=1 ; st < npos ; st++){
            // Move to back
            const float back_score = fwd[fwd_prev_off + st + 1] + move_back_pen;
            if(back_score > fwd[fwd_curr_off + nfstate + st - 1]){
                fwd[fwd_curr_off + nfstate + st - 1] = back_score;
                traceback[tr_off + nfstate + st - 1] = st + 1;
            }
        }
        for(size_t st=1 ; st < npos ; st++){
            // Move from back
            const float back_score = fwd[fwd_prev_off + nfstate + st - 1] + move_from_back_pen;
            if(back_score > fwd[fwd_curr_off + st + 1]){
                fwd[fwd_curr_off + st + 1] = back_score;
                traceback[tr_off + st + 1] = nfstate + st - 1;
            }
        }


        for(size_t pos=0 ; pos < npos ; pos++){
            //  Add on score for samples
            const float location = params->data.f[pos * ldp + 0];
            const float logscale = params->data.f[pos * ldp + 1];
            const float logscore = fmaxf(-minscore, loglaplace(rawsig[sample], location, scale[pos], logscale));
            //  State to add to is offset by one because of start state
            fwd[fwd_curr_off + pos + 1] += logscore;
            fwd[fwd_curr_off + nfstate + pos] += logscore;
        }

        // Score for start and end states
        fwd[fwd_curr_off + 0] -= local_pen;
        fwd[fwd_curr_off + nfstate - 1] -= local_pen;

    }

    //  Score of best path and final states.  Could be either last position or end state
    const size_t fwd_offset = (nsample % 2) * nstate;
    final_score = fmaxf(fwd[fwd_offset + nfstate - 2], fwd[fwd_offset + nfstate - 1]);
    if(fwd[fwd_offset + nfstate - 2] > fwd[fwd_offset + nfstate - 1]){
        path[nsample - 1] = nfstate - 2;
    } else {
        path[nsample - 1] = nfstate - 1;
    }

    for(size_t sample=1 ; sample < nsample ; sample++){
        const size_t rs = nsample - sample;
        const size_t tr_off = rs * nstate;
        path[rs - 1] = traceback[tr_off + path[rs]];
    }

    // Correct path so start and end states are encoded as -1, other states as positions
    {
        size_t sample_min = 0;
        size_t sample_max = nsample;
        for(; sample_min < nsample ; sample_min++){
            if(0 != path[sample_min]){
                break;
            }
            path[sample_min] = -1;
        }
        for(; sample_max > 0 ; sample_max--){
            if(nfstate - 1 != path[sample_max - 1]){
                break;
            }
            path[sample_max - 1] = -1;
        }
        for(size_t sample=sample_min ; sample < sample_max ; sample++){
            assert(path[sample] > 0);
            if(path[sample] >= nfstate){
                path[sample] -= nfstate;
            } else {
                path[sample] -= 1;
            }
        }
    }

clean:
    free(traceback);
    free(stay_pen);
    free(scale);
    free(fwd);
    free(move_pen);

    return final_score;
}


/**  Score a signal against a predicted squiggle using variant of dynamic time-warping
 *
 *   Uses a local mapping so not all of signal may be mapped and not every position of the
 *   predicted squiggle may be mapped to.
 *
 *   @param signal `raw_table` containing signal to map
 *   @param rate Read translocation rate relative to squiggle model
 *   @param params `scrappie_matrix` containing predicted squiggle
 *   @param prob_back Probability of a backward movement.
 *   @param local_pen Penalty for local mapping (stay in start or ends state)
 *   @param skip_pen  Penalty for skipping
 *   @param minscore Minimum possible emission for
 *
 *   @returns score
 **/
float squiggle_match_forward(const raw_table signal, float rate, const_scrappie_matrix params,
                             float prob_back, float local_pen, float skip_pen, float minscore){
    RETURN_NULL_IF(NULL == signal.raw, NAN);
    RETURN_NULL_IF(NULL == params, NAN);
    assert(signal.start < signal.end);
    assert(signal.end <= signal.n);
    assert(prob_back >= 0.0f && prob_back <= 1.0f);
    assert(rate > 0.0);

    float final_score = NAN;

    const float * rawsig = signal.raw + signal.start;
    const size_t nsample = signal.end - signal.start;
    const size_t ldp = params->stride;
    const size_t npos = params->nc;
    const size_t nfstate = npos + 2;
    const size_t nstate = npos + nfstate;

    const float move_back_pen = logf(prob_back);
    const float stay_in_back_pen = logf(0.5f);
    const float move_from_back_pen = logf(0.5f);

    float * move_pen = calloc(nfstate, sizeof(float));
    float * fwd = calloc(2 * nstate, sizeof(float));
    float * scale = calloc(npos, sizeof(float));
    float * stay_pen = calloc(nfstate, sizeof(float));
    if(NULL == move_pen || NULL == fwd || NULL == scale ||
       NULL == stay_pen){
        goto clean;
    }

    for(size_t pos=0 ; pos < npos ; pos++){
        //  Create array of scales
        scale[pos] = expf(params->data.f[pos * ldp + 1]);
    }

    {
        const float lograte = logf(rate);
        float mean_move_pen = 0.0f;
        float mean_stay_pen = 0.0f;
        for(size_t pos=0 ; pos < npos ; pos++){
            const float mp = (1.0f - prob_back) * plogisticf(params->data.f[pos * ldp + 2] + lograte);
            move_pen[pos + 1] = logf(mp);
            stay_pen[pos + 1] = log1pf(-mp - prob_back);
            mean_move_pen += move_pen[pos + 1];
            mean_stay_pen += stay_pen[pos + 1];
        }
        mean_move_pen /= npos;
        mean_stay_pen /= npos;

        move_pen[0] = mean_move_pen;
        move_pen[nfstate - 1] = mean_move_pen;
        stay_pen[0] = mean_stay_pen;
        stay_pen[nfstate - 1] = mean_stay_pen;
    }

    for(size_t st=0 ; st < nstate ; st++){
        // States are start .. positions .. end
        fwd[st] = -LARGE_VAL;
    }
    // Must begin in start state
    fwd[0] = 0.0;


    for(size_t sample=0 ; sample < nsample ; sample++){
        const size_t fwd_prev_off = (sample % 2) * nstate;
        const size_t fwd_curr_off = ((sample + 1) % 2) * nstate;

        for(size_t st=0 ; st < nfstate ; st++){
            //  Stay in start, end or normal position
            fwd[fwd_curr_off + st] = fwd[fwd_prev_off + st] + stay_pen[st];
        }
        for(size_t st=0 ; st < npos ; st++){
            //  Stay in back position
            const size_t idx = nfstate + st;
            fwd[fwd_curr_off + idx] = fwd[fwd_prev_off + idx] + stay_in_back_pen;
        }
        for(size_t st=1 ; st < nfstate ; st++){
            //  Move to next position
            const float step_score = fwd[fwd_prev_off + st - 1] + move_pen[st - 1];
            fwd[fwd_curr_off + st] = logsumexpf(fwd[fwd_curr_off + st], step_score);
        }
        for(size_t st=2 ; st < nfstate ; st++){
            //  Skip to next position
            const float skip_score = fwd[fwd_prev_off + st - 2] + move_pen[st - 2] - skip_pen;
            fwd[fwd_curr_off + st] = logsumexpf(fwd[fwd_curr_off + st], skip_score);
        }
        for(size_t destpos=1 ; destpos < npos ; destpos++){
            const size_t destst = destpos + 1;
            //  Move from start into sequence
            const float score = fwd[fwd_prev_off] + move_pen[0] - local_pen * destpos;
            fwd[fwd_curr_off + destst] = logsumexpf(fwd[fwd_curr_off + destst], score);
        }
        for(size_t origpos=0 ; origpos < (npos - 1) ; origpos++){
            const size_t destst = nfstate - 1;
            const size_t origst = origpos + 1;
            const size_t deltapos = npos - 1 - origpos;
            //  Move from sequence into end
            const float score = fwd[fwd_prev_off + origst] + move_pen[origst] - local_pen * deltapos;
            fwd[fwd_curr_off + destst] = logsumexpf(fwd[fwd_curr_off + destst], score);
        }
        for(size_t st=1 ; st < npos ; st++){
            // Move to back
            const float back_score = fwd[fwd_prev_off + st + 1] + move_back_pen;
            fwd[fwd_curr_off + nfstate + st - 1] = logsumexpf(fwd[fwd_curr_off + nfstate + st - 1], back_score);
        }
        for(size_t st=1 ; st < npos ; st++){
            // Move from back
            const float back_score = fwd[fwd_prev_off + nfstate + st - 1] + move_from_back_pen;
            fwd[fwd_curr_off + st + 1] = logsumexpf(fwd[fwd_curr_off + st + 1], back_score);
        }

        for(size_t pos=0 ; pos < npos ; pos++){
            //  Add on score for samples
            const float location = params->data.f[pos * ldp + 0];
            const float logscale = params->data.f[pos * ldp + 1];
            const float logscore = fmaxf(-minscore, loglaplace(rawsig[sample], location, scale[pos], logscale));
            //  State to add to is offset by one because of start state
            fwd[fwd_curr_off + pos + 1] += logscore;
            fwd[fwd_curr_off + nfstate + pos] += logscore;
        }

        // Score for start and end states
        fwd[fwd_curr_off + 0] -= local_pen;
        fwd[fwd_curr_off + nfstate - 1] -= local_pen;

    }

    //  Score of best path and final states.  Could be either last position or end state
    const size_t fwd_offset = (nsample % 2) * nstate;
    final_score = logsumexpf(fwd[fwd_offset + nfstate - 2], fwd[fwd_offset + nfstate - 1]);

clean:
    free(stay_pen);
    free(scale);
    free(fwd);
    free(move_pen);

    return final_score;
}


/**  Viterbi score of sequence
 *
 *   Local-global mapping through sequence calculating scores of best path from basecall posterior
 *
 *   Internal states are seq0 ... seq, start, end
 *
 *   @param logpost   Log posterior probability of state at each block.  Stay is last state.
 *   @param stay_pen  Penalty for staying
 *   @param skip_pen  Penalty for skipping
 *   @param local_pen Penalty for local mapping (stay in start or ends state)
 *   @param seq       Sequence encoded into same history states as basecalls
 *   @param seqlen    Length of seq
 *   @param path      Viterbi path [out].  If NULL, no path is returned
 *
 *   @returns score
 **/
float map_to_sequence_viterbi(const_scrappie_matrix logpost, float stay_pen, float skip_pen,
                              float local_pen, int const *seq, size_t seqlen, int *path){
    float logscore = NAN;
    RETURN_NULL_IF(NULL == logpost, logscore);
    RETURN_NULL_IF(NULL == seq, logscore);

    const size_t nblock = logpost->nc;
    const size_t nst = logpost->nr;
    const size_t STAY = nst - 1;

    const size_t nseqstate = seqlen + 2;
    const size_t START_STATE = seqlen;
    const size_t END_STATE = seqlen + 1;

    // Memory.
    float * cscore = calloc(nseqstate, sizeof(float));
    float * pscore = calloc(nseqstate, sizeof(float));
    scrappie_imatrix traceback = make_scrappie_imatrix(nseqstate, nblock);
    if(NULL == cscore || NULL == pscore || NULL == traceback){
        traceback = free_scrappie_imatrix(traceback);
        free(pscore);
        free(cscore);
        return logscore;
    }


    //  Initialise
    for(size_t pos=0 ; pos < nseqstate ; pos++){
        cscore[pos] = -BIG_FLOAT;
    }
    cscore[START_STATE] = 0.0;

    // Forwards Viterbi
    for(size_t blk=0 ; blk < nblock ; blk++){
        const size_t lpoffset = blk * logpost->stride;
        const size_t toffset = blk * traceback->stride;
        {   // Swap vectors
            float * tmp = pscore;
            pscore = cscore;
            cscore = tmp;
        }

        // Stay in start state (local penalty or stay)
        cscore[START_STATE] = pscore[START_STATE] + fmaxf(-local_pen, logpost->data.f[lpoffset + STAY]);
        traceback->data.f[toffset + START_STATE] = START_STATE;
        // Stay in end state (local penalty or stay)
        cscore[END_STATE] = pscore[END_STATE] + fmaxf(-local_pen, logpost->data.f[lpoffset + STAY]);
        traceback->data.f[toffset + END_STATE] = END_STATE;

        for(size_t pos=0 ; pos < seqlen ; pos++){
            //  Stay in ordinary state
            cscore[pos] = pscore[pos] - stay_pen + logpost->data.f[lpoffset + STAY];
            traceback->data.f[toffset + pos] = pos;
        }

        for(size_t pos=1 ; pos < seqlen ; pos++){
            //  Step
            const size_t newstate = seq[pos];
            const float step_score = pscore[pos - 1] + logpost->data.f[lpoffset + newstate];
            if(step_score > cscore[pos]){
                cscore[pos] = step_score;
                traceback->data.f[toffset + pos] = pos - 1;
            }
        }

        for(size_t pos=2 ; pos < seqlen ; pos++){
            //  Skip
            const size_t newstate = seq[pos];
            const float skip_score = pscore[pos - 2] - skip_pen + logpost->data.f[lpoffset + newstate];
            if(skip_score > cscore[pos]){
                cscore[pos] = skip_score;
                traceback->data.f[toffset + pos] = pos - 2;
            }
        }

        // Move directly from start to end without mapping
        /*if(pscore[START_STATE] - local_pen > cscore[END_STATE]){
            cscore[END_STATE] = pscore[START_STATE] - local_pen;
            traceback->data.f[toffset + END_STATE] = START_STATE;
        }*/
        // Move from start into sequence
        if(pscore[START_STATE] + logpost->data.f[lpoffset + seq[0]] > cscore[0]){
            cscore[0] = pscore[START_STATE] + logpost->data.f[lpoffset + seq[0]];
            traceback->data.f[toffset + 0] = START_STATE;
        }
        // Move from sequence into end
        if(pscore[seqlen - 1] - local_pen > cscore[END_STATE]){
            cscore[END_STATE] = pscore[seqlen - 1] - local_pen;
            traceback->data.f[toffset + END_STATE] = seqlen - 1;
        }
    }

    logscore = fmaxf(cscore[seqlen - 1], cscore[END_STATE]);
    if(NULL != path){
        path[nblock - 1] = (cscore[seqlen-1] > cscore[END_STATE]) ? (seqlen - 1) : END_STATE;
        for(size_t blk=nblock - 1; blk > 0 ; blk--){
            const size_t toffset = blk * traceback->stride;
            path[blk - 1] = traceback->data.f[toffset + path[blk]];
        }
        for(size_t blk=0 ; blk < nblock ; blk++){
            if(START_STATE == path[blk] || END_STATE == path[blk]){
                path[blk] = -1;
            }
        }
    }

    traceback = free_scrappie_imatrix(traceback);
    free(pscore);
    free(cscore);

    return logscore;
}


/**  Forward  score of sequence
 *
 *   Local-Global mapping through sequence calculating sum of scores over all paths from basecall posterior
 *
 *   @param logpost   Log posterior probability of state at each block.  Stay is last state.
 *   @param stay_pen  Penalty for staying
 *   @param skip_pen  Penalty for skipping
 *   @param local_pen Penalty for local mapping (stay in start or ends state)
 *   @param seq       Sequence encoded into same history states as basecalls
 *   @param seqlen    Length of seq
 *
 *   @returns score
 **/
float map_to_sequence_forward(const_scrappie_matrix logpost, float stay_pen, float skip_pen,
                              float local_pen, int const *seq, size_t seqlen){
    float logscore = NAN;
    RETURN_NULL_IF(NULL == logpost, logscore);
    RETURN_NULL_IF(NULL == seq, logscore);

    const size_t nblock = logpost->nc;
    const size_t nst = logpost->nr;
    const size_t STAY = nst - 1;

    const size_t nseqstate = seqlen + 2;
    const size_t START_STATE = seqlen;
    const size_t END_STATE = seqlen + 1;

    // Memory.
    float * cscore = calloc(nseqstate, sizeof(float));
    float * pscore = calloc(nseqstate, sizeof(float));
    if(NULL == cscore || NULL == pscore){
        free(pscore);
        free(cscore);
        return logscore;
    }


    //  Initialise
    for(size_t pos=0 ; pos < nseqstate ; pos++){
        cscore[pos] = -BIG_FLOAT;
    }
    cscore[START_STATE] = 0.0;

    // Forwards pass
    for(size_t blk=0 ; blk < nblock ; blk++){
        const size_t lpoffset = blk * logpost->stride;
        {   // Swap vectors
            float * tmp = pscore;
            pscore = cscore;
            cscore = tmp;
        }

        // Stay in start state (local penalty or stay)
        cscore[START_STATE] = pscore[START_STATE] + logsumexpf(-local_pen, logpost->data.f[lpoffset + STAY]);
        // Stay in end state (local penalty or stay)
        cscore[END_STATE] = pscore[END_STATE] + logsumexpf(-local_pen, logpost->data.f[lpoffset + STAY]);

        for(size_t pos=0 ; pos < seqlen ; pos++){
            //  Stay
            cscore[pos] = pscore[pos] - stay_pen + logpost->data.f[lpoffset + STAY];
        }

        for(size_t pos=1 ; pos < seqlen ; pos++){
            //  Step
            const size_t newstate = seq[pos];
            const float step_score = pscore[pos - 1] + logpost->data.f[lpoffset + newstate];
            cscore[pos] = logsumexpf(cscore[pos], step_score);
        }


        for(size_t pos=2 ; pos < seqlen ; pos++){
            //  skip
            const size_t newstate = seq[pos];
            const float skip_score = pscore[pos - 2] - skip_pen + logpost->data.f[lpoffset + newstate];
            cscore[pos] = logsumexpf(cscore[pos], skip_score);
        }

        // Move directly from start to end without mapping
        //cscore[END_STATE] = logsumexpf(cscore[END_STATE], pscore[START_STATE] - local_pen);
        // Move from start into sequence
        cscore[0] = logsumexpf(cscore[0], pscore[START_STATE] + logpost->data.f[lpoffset + seq[0]]);
        // Move from sequence into end
        cscore[END_STATE] = logsumexpf(cscore[END_STATE], pscore[seqlen - 1] - local_pen);
    }

    logscore = logsumexpf(cscore[seqlen - 1], cscore[END_STATE]);


    free(pscore);
    free(cscore);

    return logscore;
}


/**  Check if sequences of lower and upper bounds are consistent
 *
 *   @param low     Array of lower bounds
 *   @param high    Array of upper bounds
 *   @param nblock  Number of blocks (bounds)
 *   @param seqlen  Length of sequence (maximum upper bound)
 *
 *   @returns bool
 **/
bool are_bounds_sane(size_t const * low, size_t const * high, size_t nblock, size_t seqlen){
    bool ret = true;

    if(NULL == low || NULL == high){
        warnx("One or more bounds are NULL\n");
        // Early return since further tests make no sense
        return false;
    }

    if(low[0] != 0){
        warnx("First bound must include 0 (got %zu)\n", low[0]);
        ret = false;
    }
    if(high[nblock - 1] != seqlen){
        warnx("Last bound must equal seqlen %zu (got %zu)\n", seqlen, high[nblock - 1]);
        ret = false;
    }
    for(size_t i=0 ; i < nblock ; i++){
        if(low[i] > seqlen){
            warnx("Low bound for block %zu exceeds length of sequence (got %zu but seqlen is %zu)\n", i, low[i], seqlen);
            ret = false;
        }
        if(high[i] > seqlen){
            warnx("High bound for block %zu exceeds length of sequence (got %zu but seqlen is %zu)\n", i, high[i], seqlen);
            ret = false;
        }
        if(low[i] > high[i]){
            warnx("Low bound for block %zu exceeds high bound [%zu , %zu).\n", i, low[i], high[i]);
            ret = false;
        }
    }
    for(size_t i=1 ; i < nblock ; i++){
        if(low[i] > high[i - 1]){
            // Allow case where step but not stay is possible (low[i] == high[i-1])
            warnx("Blocks %zu and %zu don't overlap [%zu , %zu) -> [%zu , %zu)\n",
                  i - 1, i , low[i - 1], high[i - 1], low[i], high[i]);
            ret = false;
        }
        if(low[i] < low[i - 1]){
            warnx("Low bounds for blocks %zu and %zu aren't monotonic [%zu , %zu) -> [%zu , %zu)\n",
                  i - 1, i , low[i - 1], high[i - 1], low[i], high[i]);
            ret = false;
        }
        if(high[i] < high[i - 1]){
            warnx("High bounds for blocks %zu and %zu aren't monotonic [%zu , %zu) -> [%zu , %zu)\n",
                  i - 1, i , low[i - 1], high[i - 1], low[i], high[i]);
            ret = false;
        }
    }

    return ret;
}


/**  Viterbi score of sequence, banded
 *
 *   Local-Global mapping through sequence calculating scores of best path from basecall posterior (banded)
 *
 *   @param logpost   Log posterior probability of state at each block.  Stay is last state.
 *   @param stay_pen  Penalty for staying
 *   @param skip_pen  Penalty for skipping
 *   @param local_pen Penalty for local mapping (stay in start or ends state)
 *   @param seq       Sequence encoded into same history states as basecalls
 *   @param seqlen    Length of seq
 *   @param poslow, poshigh  Arrays of lowest and highest coordinate for each block. Low inclusive, high exclusive
 *
 *   @returns score
 **/
float map_to_sequence_viterbi_banded(const_scrappie_matrix logpost, float stay_pen, float skip_pen, float local_pen,
                                     int const *seq, size_t seqlen, size_t const * poslow, size_t const * poshigh){
    float logscore = NAN;
    RETURN_NULL_IF(NULL == logpost, logscore);
    RETURN_NULL_IF(NULL == seq, logscore);
    RETURN_NULL_IF(NULL == poslow, logscore);
    RETURN_NULL_IF(NULL == poshigh, logscore);

    const size_t nblock = logpost->nc;
    const size_t nst = logpost->nr;
    const size_t STAY = nst - 1;

    const size_t nseqstate = seqlen + 2;
    const size_t START_STATE = seqlen;
    const size_t END_STATE = seqlen + 1;


    // Verify assumptions about bounds
    RETURN_NULL_IF(!are_bounds_sane(poslow, poshigh, nblock, seqlen), logscore);

    // Memeory. First state is stay in previous position
    float * cscore = calloc(nseqstate, sizeof(float));
    float * pscore = calloc(nseqstate, sizeof(float));
    if(NULL == cscore || NULL == pscore){
        free(pscore);
        free(cscore);
        return logscore;
    }


    //  Initialise
    for(size_t pos=0 ; pos < nseqstate ; pos++){
        pscore[pos] = -BIG_FLOAT;
        cscore[pos] = -BIG_FLOAT;
    }
    pscore[START_STATE] = 0.0;

    // Forwards Viterbi
    {  // First block
        // Stay in start state (local penalty or stay)
        cscore[START_STATE] = pscore[START_STATE] + fmaxf(-local_pen, logpost->data.f[STAY]);
        // Stay in end state (local penalty or stay)
        cscore[END_STATE] = pscore[END_STATE] + fmaxf(-local_pen, logpost->data.f[STAY]);

        cscore[0] = fmaxf(cscore[0], pscore[0] + logpost->data.f[STAY] - stay_pen);
        if(poshigh[0] > 0){
            // Step
            const size_t stepto = seq[1];
            const float step_score = logpost->data.f[stepto];
            cscore[1] = step_score;
        }
        if(poshigh[0] > 1){
            // Skip
            const size_t stepto = seq[2];
            const float skip_score = logpost->data.f[stepto] - skip_pen;
            cscore[2] = skip_score;
        }
        // Move directly from start to end without mapping -- always allow
        cscore[END_STATE] = fmaxf(cscore[END_STATE], pscore[START_STATE] - local_pen);
        // Move from start into sequence -- lower bound for first block must be zero
        cscore[0] = fmaxf(cscore[0], pscore[START_STATE] + logpost->data.f[seq[0]]);
        // Move from sequence into end
        cscore[END_STATE] = fmaxf(cscore[END_STATE], pscore[seqlen - 1] - local_pen);
    }

    for(size_t blk=1 ; blk < nblock ; blk++){
        const size_t lpoffset = blk * logpost->stride;
        {   // Swap vectors
            float * tmp = pscore;
            pscore = cscore;
            cscore = tmp;
        }

        // Stay in start state (local penalty or stay)
        cscore[START_STATE] = pscore[START_STATE] + fmaxf(-local_pen, logpost->data.f[lpoffset + STAY]);
        // Stay in end state (local penalty or stay)
        cscore[END_STATE] = pscore[END_STATE] + fmaxf(-local_pen, logpost->data.f[lpoffset + STAY]);


        for(size_t pos=poslow[blk] ; pos < poshigh[blk - 1] ; pos++){
            //  Stay
            cscore[pos] = pscore[pos] - stay_pen + logpost->data.f[lpoffset + STAY];
        }

        const size_t min_step_idx = imax(poslow[blk], poslow[blk - 1] + 1);
        const size_t max_step_idx = imin(poshigh[blk], poshigh[blk - 1] + 1);
        for(size_t pos=min_step_idx ; pos < max_step_idx ; pos++){
            // step -- pos is position going _to_
            const size_t stepto = seq[pos];
            const float step_score = pscore[pos - 1] + logpost->data.f[lpoffset + stepto];
            cscore[pos] = fmaxf(step_score, cscore[pos]);
        }

        const size_t min_skip_idx = imax(poslow[blk], poslow[blk - 1] + 2);
        const size_t max_skip_idx = imin(poshigh[blk], poshigh[blk - 1] + 2);
        for(size_t pos=min_skip_idx ; pos < max_skip_idx ; pos++){
            // skip -- pos is position going _to_
            const size_t skipto = seq[pos];
            const float skip_score = pscore[pos - 2] - skip_pen
                                   + logpost->data.f[lpoffset + skipto];
            cscore[pos] = fmaxf(skip_score, cscore[pos]);
        }

        // Move directly from start to end without mapping -- always allow
        //cscore[END_STATE] = fmaxf(cscore[END_STATE], pscore[START_STATE] - local_pen);
        // Move from start into sequence -- only allowed if lower bound is zero
        if(0 == poslow[blk]){
            cscore[0] = fmaxf(cscore[0], pscore[START_STATE] + logpost->data.f[lpoffset + seq[0]]);
        }
        // Move from sequence into end
        cscore[END_STATE] = fmaxf(cscore[END_STATE], pscore[seqlen - 1] - local_pen);
    }


    logscore = fmax(cscore[seqlen - 1], cscore[END_STATE]);

    free(pscore);
    free(cscore);

    return logscore;
}


/**  Forward score of sequence, banded
 *
 *   Local-Global mapping through sequence calculating scores of best path from basecall posterior (banded)
 *
 *   @param logpost   Log posterior probability of state at each block.  Stay is last state.
 *   @param stay_pen  Penalty for staying
 *   @param skip_pen  Penalty for skipping
 *   @param local_pen Penalty for local mapping (stay in start or ends state)
 *   @param seq       Sequence encoded into same history states as basecalls
 *   @param seqlen    Length of seq
 *   @param poslow, poshigh  Arrays of lowest and highest coordinate for each block. Low inclusive, high exclusive
 *
 *
 *   @returns score
 **/
float map_to_sequence_forward_banded(const_scrappie_matrix logpost, float stay_pen, float skip_pen, float local_pen,
                                     int const *seq, size_t seqlen, size_t const * poslow, size_t const * poshigh){
    float logscore = NAN;
    RETURN_NULL_IF(NULL == logpost, logscore);
    RETURN_NULL_IF(NULL == seq, logscore);
    RETURN_NULL_IF(NULL == poslow, logscore);
    RETURN_NULL_IF(NULL == poshigh, logscore);

    const size_t nblock = logpost->nc;
    const size_t nst = logpost->nr;
    const size_t STAY = nst - 1;

    const size_t nseqstate = seqlen + 2;
    const size_t START_STATE = seqlen;
    const size_t END_STATE = seqlen + 1;


    // Verify assumptions about bounds
    RETURN_NULL_IF(!are_bounds_sane(poslow, poshigh, nblock, seqlen), logscore);

    // Memory. First state is stay in previous position
    float * cscore = calloc(nseqstate, sizeof(float));
    float * pscore = calloc(nseqstate, sizeof(float));
    if(NULL == cscore || NULL == pscore){
        free(pscore);
        free(cscore);
        return logscore;
    }


    //  Initialise
    for(size_t pos=0 ; pos < nseqstate ; pos++){
        pscore[pos] = -BIG_FLOAT;
        cscore[pos] = -BIG_FLOAT;
    }
    pscore[START_STATE] = 0.0f;

    // Forwards pass
    {  // First block
        // Stay in start state (local penalty or stay)
        cscore[START_STATE] = pscore[START_STATE] + logsumexpf(-local_pen, logpost->data.f[STAY]);
        // Stay in end state (local penalty or stay)
        cscore[END_STATE] = pscore[END_STATE] + logsumexpf(-local_pen, logpost->data.f[STAY]);

        cscore[0] = logsumexpf(cscore[0], pscore[0] + logpost->data.f[STAY] - stay_pen);
        if(poshigh[0] > 0){
            // Step
            const size_t stepto = seq[1];
            const float step_score = logpost->data.f[stepto];
            cscore[1] = step_score;
        }
        if(poshigh[0] > 1){
            // Skip
            const size_t stepto = seq[2];
            const float skip_score = logpost->data.f[stepto] - skip_pen;
            cscore[2] = skip_score;
        }
        // Move directly from start to end without mapping -- always allow
        cscore[END_STATE] = logsumexpf(cscore[END_STATE], pscore[START_STATE] - local_pen);
        // Move from start into sequence -- lower bound for first block must be zero
        cscore[0] = logsumexpf(cscore[0], pscore[START_STATE] + logpost->data.f[seq[0]]);
        // Move from sequence into end
        cscore[END_STATE] = logsumexpf(cscore[END_STATE], pscore[seqlen - 1] - local_pen);
    }

    for(size_t blk=1 ; blk < nblock ; blk++){
        const size_t lpoffset = blk * logpost->stride;
        {   // Swap vectors
            float * tmp = pscore;
            pscore = cscore;
            cscore = tmp;
        }

        // Stay in start state (local penalty or stay)
        cscore[START_STATE] = pscore[START_STATE] + logsumexpf(-local_pen, logpost->data.f[lpoffset + STAY]);
        // Stay in end state (local penalty or stay)
        cscore[END_STATE] = pscore[END_STATE] + logsumexpf(-local_pen, logpost->data.f[lpoffset + STAY]);


        for(size_t pos=poslow[blk] ; pos < poshigh[blk - 1] ; pos++){
            //  Stay
            cscore[pos] = pscore[pos] - stay_pen + logpost->data.f[lpoffset + STAY];
        }

        const size_t min_step_idx = imax(poslow[blk], poslow[blk - 1] + 1);
        const size_t max_step_idx = imin(poshigh[blk], poshigh[blk - 1] + 1);
        for(size_t pos=min_step_idx ; pos < max_step_idx ; pos++){
            // step -- pos is position going _to_
            const size_t stepto = seq[pos];
            const float step_score = pscore[pos - 1] + logpost->data.f[lpoffset + stepto];
            cscore[pos] = logsumexpf(step_score, cscore[pos]);
        }

        const size_t min_skip_idx = imax(poslow[blk], poslow[blk - 1] + 2);
        const size_t max_skip_idx = imin(poshigh[blk], poshigh[blk - 1] + 2);
        for(size_t pos=min_skip_idx ; pos < max_skip_idx ; pos++){
            // skip -- pos is position going _to_
            const size_t skipto = seq[pos];
            const float skip_score = pscore[pos - 2] - skip_pen
                                   + logpost->data.f[lpoffset + skipto];
            cscore[pos] = logsumexpf(skip_score, cscore[pos]);
        }

        // Move directly from start to end without mapping -- always allow
        //cscore[END_STATE] = logsumexpf(cscore[END_STATE], pscore[START_STATE] - local_pen);
        // Move from start into sequence -- only allowed if lower bound is zero
        if(0 == poslow[blk]){
            cscore[0] = logsumexpf(cscore[0], pscore[START_STATE] + logpost->data.f[lpoffset + seq[0]]);
        }
        // Move from sequence into end
        cscore[END_STATE] = logsumexpf(cscore[END_STATE], pscore[seqlen - 1] - local_pen);
    }


    logscore = logsumexpf(cscore[seqlen - 1], cscore[END_STATE]);

    free(pscore);
    free(cscore);

    return logscore;
}