1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
#!/usr/bin/env python3
import argparse
import pickle
import math
import numpy as np
import re
import sys
parser = argparse.ArgumentParser()
parser.add_argument('--id', default='' , help='Identifier for model names')
parser.add_argument('model', help='Pickle to read model from')
trim_trailing_zeros = re.compile('0+p')
def small_hex(f):
hf = float(f).hex()
return trim_trailing_zeros.sub('p', hf)
def process_column(v, pad):
""" process and pad """
return [small_hex(f) for f in v] + [small_hex(0.0)] * pad
def cformatM(fh, name, X, nr=None, nc=None):
nrq = int(math.ceil(X.shape[1] / 4.0))
pad = nrq * 4 - X.shape[1]
lines = map(lambda v: ', '.join(process_column(v, pad)), X)
if nr is None:
nr = X.shape[1]
else:
nrq = int(math.ceil(nr / 4.0))
if nc is None:
nc = X.shape[0]
fh.write('float {}[] = {}\n'.format('__' + name, '{'))
fh.write('\t' + ',\n\t'.join(lines))
fh.write('};\n')
fh.write('_Mat {} = {}\n\t.nr = {},\n\t.nrq = {},\n\t.nc = {},\n\t.stride = {},\n\t.data.f = {}\n{};\n'.format('_' + name, '{', nr, nrq, nc, nrq * 4, '__' + name, '}'))
fh.write('const scrappie_matrix {} = &{};\n\n'.format(name, '_' + name))
def cformatV(fh, name, X):
nrq = int(math.ceil(X.shape[0] / 4.0))
pad = nrq * 4 - X.shape[0]
lines = ', '.join(list(map(lambda f: small_hex(f), X)) + [small_hex(0.0)] * pad)
fh.write('float {}[] = {}\n'.format( '__' + name, '{'))
fh.write('\t' + lines)
fh.write('};\n')
fh.write('_Mat {} = {}\n\t.nr = {},\n\t.nrq = {},\n\t.nc = {},\n\t.stride = {},\n\t.data.f = {}\n{};\n'.format('_' + name, '{', X.shape[0], nrq, 1, nrq * 4, '__' + name, '}'))
fh.write('const scrappie_matrix {} = &{};\n\n'.format(name, '_' + name))
if __name__ == '__main__':
args = parser.parse_args()
modelid = args.id + '_'
with open(args.model, 'rb') as fh:
network = pickle.load(fh, encoding='latin1')
network_major_version = network.version[0] if isinstance(network.version, tuple) else network.version
assert network_major_version >= 2, "Sloika model must be version >= 2 but model is {}.\nPerhaps you need to run Sloika's model_upgrade.py".format(network.version)
sys.stdout.write("""#pragma once
#ifndef NANONET_RNNRF_{}MODEL_H
#define NANONET_RNNRF_{}MODEL_H
#include <assert.h>
#include "../util.h"
""".format(modelid.upper(), modelid.upper()))
""" Convolution layer
"""
filterW = network.sublayers[0].W.get_value()
nfilter, _ , winlen = filterW.shape
cformatM(sys.stdout, 'conv_rnnrf_{}W'.format(modelid), filterW.reshape(-1, 1), nr = winlen * 4 - 3, nc=nfilter)
cformatV(sys.stdout, 'conv_rnnrf_{}b'.format(modelid), network.sublayers[0].b.get_value().reshape(-1))
sys.stdout.write("const int conv_rnnrf_{}stride = {};\n".format(modelid, network.sublayers[0].stride))
sys.stdout.write("""const size_t _conv_rnnrf_{}nfilter = {};
const size_t _conv_rnnrf_{}winlen = {};
""".format(modelid, nfilter, modelid, winlen))
""" Backward GRU (first layer)
"""
gru1 = network.sublayers[1].sublayers[0].sublayers[0]
cformatM(sys.stdout, 'gruB1_rnnrf_{}iW'.format(modelid), gru1.iW.get_value())
cformatM(sys.stdout, 'gruB1_rnnrf_{}sW'.format(modelid), gru1.sW.get_value())
cformatM(sys.stdout, 'gruB1_rnnrf_{}sW2'.format(modelid), gru1.sW2.get_value())
cformatV(sys.stdout, 'gruB1_rnnrf_{}b'.format(modelid), gru1.b.get_value().reshape(-1))
""" Forward GRU (second layer)
"""
gru2 = network.sublayers[2].sublayers[0]
cformatM(sys.stdout, 'gruF2_rnnrf_{}iW'.format(modelid), gru2.iW.get_value())
cformatM(sys.stdout, 'gruF2_rnnrf_{}sW'.format(modelid), gru2.sW.get_value())
cformatM(sys.stdout, 'gruF2_rnnrf_{}sW2'.format(modelid), gru2.sW2.get_value())
cformatV(sys.stdout, 'gruF2_rnnrf_{}b'.format(modelid), gru2.b.get_value().reshape(-1))
""" backward GRU(third layer)
"""
gru3 = network.sublayers[3].sublayers[0].sublayers[0]
cformatM(sys.stdout, 'gruB3_rnnrf_{}iW'.format(modelid), gru3.iW.get_value())
cformatM(sys.stdout, 'gruB3_rnnrf_{}sW'.format(modelid), gru3.sW.get_value())
cformatM(sys.stdout, 'gruB3_rnnrf_{}sW2'.format(modelid), gru3.sW2.get_value())
cformatV(sys.stdout, 'gruB3_rnnrf_{}b'.format(modelid), gru3.b.get_value().reshape(-1))
""" Forward GRU (fourth layer)
"""
gru4 = network.sublayers[4].sublayers[0]
cformatM(sys.stdout, 'gruF4_rnnrf_{}iW'.format(modelid), gru4.iW.get_value())
cformatM(sys.stdout, 'gruF4_rnnrf_{}sW'.format(modelid), gru4.sW.get_value())
cformatM(sys.stdout, 'gruF4_rnnrf_{}sW2'.format(modelid), gru4.sW2.get_value())
cformatV(sys.stdout, 'gruF4_rnnrf_{}b'.format(modelid), gru4.b.get_value().reshape(-1))
""" backward GRU(fifth layer)
"""
gru5 = network.sublayers[5].sublayers[0].sublayers[0]
cformatM(sys.stdout, 'gruB5_rnnrf_{}iW'.format(modelid), gru5.iW.get_value())
cformatM(sys.stdout, 'gruB5_rnnrf_{}sW'.format(modelid), gru5.sW.get_value())
cformatM(sys.stdout, 'gruB5_rnnrf_{}sW2'.format(modelid), gru5.sW2.get_value())
cformatV(sys.stdout, 'gruB5_rnnrf_{}b'.format(modelid), gru5.b.get_value().reshape(-1))
""" Global norm layer
"""
nstate = network.sublayers[6].W.get_value().shape[0]
cformatM(sys.stdout, 'FF_rnnrf_{}W'.format(modelid), network.sublayers[6].W.get_value())
cformatV(sys.stdout, 'FF_rnnrf_{}b'.format(modelid), network.sublayers[6].b.get_value())
sys.stdout.write('#endif /* NANONET_RNNRF_{}MODEL_H */'.format(modelid.upper()))
|