1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
/*
* Long running tests that ensure that scrm produces correct results
* in various settings.
*/
#pragma GCC diagnostic ignored "-Wwrite-strings"
#include <cppunit/TestCase.h>
#include <cppunit/extensions/HelperMacros.h>
#include <valarray>
#include <cmath>
#include "../../src/forest.h"
#include "../../src/param.h"
#include "../../src/random/mersenne_twister.h"
class TestAlgorithm : public CppUnit::TestCase {
CPPUNIT_TEST_SUITE( TestAlgorithm );
CPPUNIT_TEST( testInitialTree );
CPPUNIT_TEST( testARG );
CPPUNIT_TEST( testPruning );
CPPUNIT_TEST( testMigration );
CPPUNIT_TEST( testSizeChange );
CPPUNIT_TEST( testGrowth );
CPPUNIT_TEST( testSplit );
CPPUNIT_TEST( testMerge );
CPPUNIT_TEST_SUITE_END();
private:
MersenneTwister *rg;
void testTree(Model &model, size_t replicates,
double tmrca_mean, double tmrca_sd,
double tree_length_mean, double tree_length_sd) {
double tmrca[6] = { 0 }, tree_length[6] = { 0 };
std::cout << "." << std::flush;
for (size_t i = 0; i < replicates; ++i) {
// Check initial tree
Forest forest = Forest(&model, this->rg);
forest.buildInitialTree();
tmrca[0] += forest.getTMRCA(true);
tree_length[0] += forest.getLocalTreeLength(true);
// Check after recombinations
if (model.recombination_rate() > 0) {
for (size_t j = 1; j <= 5; j++) {
while (forest.next_base() < j*5) {
forest.sampleNextGenealogy();
}
tmrca[j] += forest.getTMRCA(true);
tree_length[j] += forest.getLocalTreeLength(true);
}
}
}
// Allow an relative error of 2.5%. It would be nice to calculate
// standard errors, but there's nothing in the std and I'm to lazy to
// implement very it myself...
for (int i = 0; i <= 5; ++i) {
if (i > 0 && tmrca[i] == 0 && tree_length[i] == 0) continue;
tmrca[i] /= replicates;
double SE = tmrca_sd / sqrt(replicates);
if (tmrca[i] < tmrca_mean - 4 * SE || tmrca_mean + 4 * SE < tmrca[i]) {
std::cout << std::endl
<< "TMRCA outside expected range. Observed: " << tmrca[i]
<< " Expected: " << tmrca_mean << std::endl;
CPPUNIT_ASSERT( false );
}
tree_length[i] /= replicates;
SE = tree_length_sd / sqrt(replicates);
if (tree_length[i] < tree_length_mean - 4 * SE || tree_length_mean + 4 * SE < tree_length[i]) {
std::cout << std::endl
<< "Local Tree Length outside expected range. Observed: " << tree_length[i]
<< " Expected: " << tree_length_mean << std::endl;
CPPUNIT_ASSERT( false );
}
}
}
public:
void setUp() {
rg = new MersenneTwister(78361);
}
void tearDown() {
delete rg;
}
void testInitialTree() {
Model model = Model(5);
model.setRecombinationRate(0);
testTree(model, 10000, 0.8, 0.53, 2.08, 1.19);
model = Model(10);
model.setRecombinationRate(0);
testTree(model, 10000, 0.9, 0.53, 2.83, 1.24);
model = Model(20);
model.setRecombinationRate(0);
testTree(model, 10000, 0.95, 0.54, 3.55, 1.26);
}
void testARG() {
Model model = Model(5);
model.setRecombinationRate(1, false, true);
testTree(model, 10000, 0.8, 0.53, 2.08, 1.19);
model = Model(10);
model.setRecombinationRate(1, false, true);
testTree(model, 10000, 0.9, 0.53, 2.83, 1.24);
model = Model(20);
model.setRecombinationRate(1, false, true);
testTree(model, 10000, 0.95, 0.54, 3.55, 1.26);
}
void testPruning() {
Model model = Model(10);
model.setRecombinationRate(1, false, true);
model.set_window_length_seq(0);
testTree(model, 10000, 0.9, 0.53, 2.83, 1.24);
model.set_window_length_seq(5);
testTree(model, 5000, 0.9, 0.53, 2.83, 1.24);
model.set_window_length_seq(10);
testTree(model, 5000, 0.9, 0.53, 2.83, 1.24);
model.disable_approximation();
model.set_window_length_rec(0);
testTree(model, 10000, 0.9, 0.53, 2.83, 1.24);
model.set_window_length_rec(5);
testTree(model, 5000, 0.9, 0.53, 2.83, 1.24);
model.set_window_length_rec(10);
testTree(model, 5000, 0.9, 0.53, 2.83, 1.24);
}
void testMigration() {
Model model = Model(0);
model.setRecombinationRate(1, false, true);
model.set_population_number(2);
std::vector<size_t> sample_size;
sample_size.push_back(7);
sample_size.push_back(3);
model.addSampleSizes(0.0, sample_size);
model.addSymmetricMigration(0.0, 0.5, true, true);
model.finalize();
testTree(model, 2000, 2.76, 1.79, 7.82, 3.86);
model = Model(0);
model.setRecombinationRate(1, false, true);
model.set_population_number(2);
model.addSampleSizes(0.0, sample_size);
model.addSymmetricMigration(0.0, 0.5, true, true);
model.addSymmetricMigration(0.3, 1.1, true, true);
model.set_window_length_seq(5);
model.finalize();
testTree(model, 2000, 2.24, 1.36, 6.73, 3.04);
model = Model(0);
char *argv[] = { "scrm", "20", "10", "-I", "2", "10", "10", "-ma", "x", "5", "7", "x" };
model = Param(12, argv).parse();
testTree(model, 2000, 1.93, 1.09, 7.24, 2.56);
}
void testSizeChange() {
Model model = Model(0);
model = Param("10 1 -r 1 100 -I 3 3 3 4 0.5 -eN 0.1 0.05 -eN 0.2 0.5").parse();
testTree(model, 1000, 3.75, 2.68, 9.31, 5.67);
model.set_window_length_seq(5);
testTree(model, 1000, 3.75, 2.68, 9.31, 5.67);
}
void testGrowth() {
Model model = Param("10 30 -r 50 50 -G 5").parse();
testTree(model, 2500, 0.321, 0.089, 1.31, 0.28);
model = Param("10 30 -r 50 50 -G -0.5 -eG 0.75 2 -l 5").parse();
testTree(model, 2500, 0.918, 0.38, 2.95, 1.00);
model = Param("4 30 -r 50 50 -G -2.5 -eN 1 0.25 -eG 2 0.0 -eN 2.5 0.25 -l 5").parse();
testTree(model, 1000, 0.964, 0.34, 2.48, 0.97);
}
void testSplit() {
Model model = Model(0);
model.setLocusLength(100);
model.setRecombinationRate(1, false, true);
model.set_population_number(2);
std::vector<size_t> sample_size;
sample_size.push_back(7);
sample_size.push_back(3);
model.addSampleSizes(0.0, sample_size);
model.addSymmetricMigration(0.0, 0.5, true, true);
model.addSingleMigrationEvent(1.0, 1, 0, 1.0, true);
model.addSymmetricMigration(1.0, 0.0, true, true);
model.finalize();
testTree(model, 2500, 1.51, 0.55, 5.20, 1.44);
model = Param("15 5 -r 50 50 -I 3 7 3 5 0.5 -ej 0.5 3 2 -ej 1.0 2 1").parse();
testTree(model, 2500, 1.60, 0.54, 7.29, 1.48);
model.set_window_length_seq(5);
testTree(model, 2500, 1.60, 0.54, 7.29, 1.48);
}
void testMerge() {
Model model = Param("20 10 -r 50 50 -I 2 10 10 1.5 -es 1.6 2 0.5 -eM 2.0 1").parse();
testTree(model, 1000, 2.88, 2.26, 9.36, 4.87);
model.set_window_length_seq(5);
testTree(model, 1000, 2.88, 2.26, 9.36, 4.87);
model = Param("20 10 -r 50 50 -I 2 10 10 1.5 -es 0.9 1 0.8 -es 1.6 2 0.5 -eM 2.0 1").parse();
testTree(model, 1000, 3.82, 3.32, 11.39, 7.09);
model.set_window_length_seq(5);
testTree(model, 1000, 3.82, 3.32, 11.39, 7.09);
}
};
//Uncomment this to activate the test
CPPUNIT_TEST_SUITE_REGISTRATION( TestAlgorithm );
|