1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
/*
* This is from FiSH, adapted for ScrollZ by flier
*
* $Id: sha-256.c,v 1.2 2009-12-21 14:14:17 f Exp $
*/
/*
* An implementation of the SHA-256 hash function, this is endian neutral
* so should work just about anywhere.
*
* This code works much like the MD5 code provided by RSA. You sha_init()
* a "sha_state" then sha_process() the bytes you want and sha_done() to get
* the output.
*
* Revised Code: Complies to SHA-256 standard now.
*
* Tom St Denis -- http://tomstdenis.home.dhs.org
* */
#include <stdio.h>
#include "irc.h"
#ifdef HAVE_GMP
typedef struct {
uint32_t state[8], length, curlen;
unsigned char buf[64];
}
sha_state;
/* the K array */
static const uint32_t K[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/* Various logical functions */
#define Ch(x,y,z) ((x & y) ^ (~x & z))
#define Maj(x,y,z) ((x & y) ^ (x & z) ^ (y & z))
#define S(x, n) (((x)>>((n)&31))|((x)<<(32-((n)&31))))
#define R(x, n) ((x)>>(n))
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
/* compress 512-bits */
static void sha_compress(sha_state * md)
{
uint32_t S[8], W[64], t0, t1;
int i;
/* copy state into S */
for (i = 0; i < 8; i++)
S[i] = md->state[i];
/* copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++)
W[i] = (((uint32_t) md->buf[(4 * i) + 0]) << 24) |
(((uint32_t) md->buf[(4 * i) + 1]) << 16) |
(((uint32_t) md->buf[(4 * i) + 2]) << 8) |
(((uint32_t) md->buf[(4 * i) + 3]));
/* fill W[16..63] */
for (i = 16; i < 64; i++)
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
/* Compress */
for (i = 0; i < 64; i++) {
t0 = S[7] + Sigma1(S[4]) + Ch(S[4], S[5], S[6]) + K[i] + W[i];
t1 = Sigma0(S[0]) + Maj(S[0], S[1], S[2]);
S[7] = S[6];
S[6] = S[5];
S[5] = S[4];
S[4] = S[3] + t0;
S[3] = S[2];
S[2] = S[1];
S[1] = S[0];
S[0] = t0 + t1;
}
/* feedback */
for (i = 0; i < 8; i++)
md->state[i] += S[i];
}
/* init the SHA state */
void sha_init(sha_state * md)
{
md->curlen = md->length = 0;
md->state[0] = 0x6A09E667UL;
md->state[1] = 0xBB67AE85UL;
md->state[2] = 0x3C6EF372UL;
md->state[3] = 0xA54FF53AUL;
md->state[4] = 0x510E527FUL;
md->state[5] = 0x9B05688CUL;
md->state[6] = 0x1F83D9ABUL;
md->state[7] = 0x5BE0CD19UL;
}
void sha_process(sha_state * md, unsigned char *buf, int len)
{
while (len--) {
/* copy byte */
md->buf[md->curlen++] = *buf++;
/* is 64 bytes full? */
if (md->curlen == 64) {
sha_compress(md);
md->length += 512;
md->curlen = 0;
}
}
}
void sha_done(sha_state * md, unsigned char *hash)
{
int i;
/* increase the length of the message */
md->length += md->curlen * 8;
/* append the '1' bit */
md->buf[md->curlen++] = 0x80;
/* if the length is currenlly above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->curlen >= 56) {
for (; md->curlen < 64;)
md->buf[md->curlen++] = 0;
sha_compress(md);
md->curlen = 0;
}
/* pad upto 56 bytes of zeroes */
for (; md->curlen < 56;)
md->buf[md->curlen++] = 0;
/* since all messages are under 2^32 bits we mark the top bits zero */
for (i = 56; i < 60; i++)
md->buf[i] = 0;
/* append length */
for (i = 60; i < 64; i++)
md->buf[i] = (unsigned char)(md->length >> ((63 - i) * 8));
sha_compress(md);
/* copy output */
for (i = 0; i < 32; i++)
hash[i] = (unsigned char)(md->state[i >> 2] >> (((3 - i) & 3) << 3));
}
// sha-256 a block of memory
void SHA256_memory(unsigned char *buf, int len, unsigned char *hash)
{
sha_state md;
sha_init(&md);
sha_process(&md, buf, len);
sha_done(&md, hash);
memset(&md, 0, sizeof(md));
}
// sha-256 a file, return 1 if ok
int sha_file(unsigned char *filename, unsigned char *hash)
{
unsigned char buf[512];
int i;
FILE *in;
sha_state md;
sha_init(&md);
in = fopen(filename, "rb");
if (!in) return 0;
do {
i = fread(buf, 1, 512, in);
sha_process(&md, buf, i);
}
while (i == 512);
sha_done(&md, hash);
fclose(in);
return 1;
}
#endif /* HAVE_GMP */
|