1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/*-
* Copyright 2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#include "scrypt_platform.h"
#include <sys/types.h>
#include <sys/mman.h>
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "cpusupport.h"
#include "sha256.h"
#include "warnp.h"
#include "crypto_scrypt_smix.h"
#include "crypto_scrypt_smix_sse2.h"
#include "crypto_scrypt.h"
static void (*smix_func)(uint8_t *, size_t, uint64_t, void *, void *) = NULL;
/**
* _crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen, smix):
* Perform the requested scrypt computation, using ${smix} as the smix routine.
*/
static int
_crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t _r, uint32_t _p,
uint8_t * buf, size_t buflen,
void (*smix)(uint8_t *, size_t, uint64_t, void *, void *))
{
void * B0, * V0, * XY0;
uint8_t * B;
uint32_t * V;
uint32_t * XY;
size_t r = _r, p = _p;
uint32_t i;
/* Sanity-check parameters. */
#if SIZE_MAX > UINT32_MAX
if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
errno = EFBIG;
goto err0;
}
#endif
if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
errno = EFBIG;
goto err0;
}
if (((N & (N - 1)) != 0) || (N < 2)) {
errno = EINVAL;
goto err0;
}
if ((r > SIZE_MAX / 128 / p) ||
#if SIZE_MAX / 256 <= UINT32_MAX
(r > (SIZE_MAX - 64) / 256) ||
#endif
(N > SIZE_MAX / 128 / r)) {
errno = ENOMEM;
goto err0;
}
/* Allocate memory. */
#ifdef HAVE_POSIX_MEMALIGN
if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0)
goto err0;
B = (uint8_t *)(B0);
if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0)
goto err1;
XY = (uint32_t *)(XY0);
#if !defined(MAP_ANON) || !defined(HAVE_MMAP)
if ((errno = posix_memalign(&V0, 64, (size_t)(128 * r * N))) != 0)
goto err2;
V = (uint32_t *)(V0);
#endif
#else
if ((B0 = malloc(128 * r * p + 63)) == NULL)
goto err0;
B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
if ((XY0 = malloc(256 * r + 64 + 63)) == NULL)
goto err1;
XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
#if !defined(MAP_ANON) || !defined(HAVE_MMAP)
if ((V0 = malloc(128 * r * N + 63)) == NULL)
goto err2;
V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
#endif
#endif
#if defined(MAP_ANON) && defined(HAVE_MMAP)
if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE,
#ifdef MAP_NOCORE
MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
#else
MAP_ANON | MAP_PRIVATE,
#endif
-1, 0)) == MAP_FAILED)
goto err2;
V = (uint32_t *)(V0);
#endif
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
/* 2: for i = 0 to p - 1 do */
for (i = 0; i < p; i++) {
/* 3: B_i <-- MF(B_i, N) */
(smix)(&B[i * 128 * r], r, N, V, XY);
}
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
/* Free memory. */
#if defined(MAP_ANON) && defined(HAVE_MMAP)
if (munmap(V0, 128 * r * N))
goto err2;
#else
free(V0);
#endif
free(XY0);
free(B0);
/* Success! */
return (0);
err2:
free(XY0);
err1:
free(B0);
err0:
/* Failure! */
return (-1);
}
#define TESTLEN 64
static struct scrypt_test {
const char * passwd;
const char * salt;
uint64_t N;
uint32_t r;
uint32_t p;
uint8_t result[TESTLEN];
} testcase = {
.passwd = "pleaseletmein",
.salt = "SodiumChloride",
.N = 16,
.r = 8,
.p = 1,
.result = {
0x25, 0xa9, 0xfa, 0x20, 0x7f, 0x87, 0xca, 0x09,
0xa4, 0xef, 0x8b, 0x9f, 0x77, 0x7a, 0xca, 0x16,
0xbe, 0xb7, 0x84, 0xae, 0x18, 0x30, 0xbf, 0xbf,
0xd3, 0x83, 0x25, 0xaa, 0xbb, 0x93, 0x77, 0xdf,
0x1b, 0xa7, 0x84, 0xd7, 0x46, 0xea, 0x27, 0x3b,
0xf5, 0x16, 0xa4, 0x6f, 0xbf, 0xac, 0xf5, 0x11,
0xc5, 0xbe, 0xba, 0x4c, 0x4a, 0xb3, 0xac, 0xc7,
0xfa, 0x6f, 0x46, 0x0b, 0x6c, 0x0f, 0x47, 0x7b,
}
};
static int
testsmix(void (*smix)(uint8_t *, size_t, uint64_t, void *, void *))
{
uint8_t hbuf[TESTLEN];
/* Perform the computation. */
if (_crypto_scrypt(
(const uint8_t *)testcase.passwd, strlen(testcase.passwd),
(const uint8_t *)testcase.salt, strlen(testcase.salt),
testcase.N, testcase.r, testcase.p, hbuf, TESTLEN, smix))
return (-1);
/* Does it match? */
return (memcmp(testcase.result, hbuf, TESTLEN));
}
static void
selectsmix(void)
{
#ifdef CPUSUPPORT_X86_SSE2
/* If we're running on an SSE2-capable CPU, try that code. */
if (cpusupport_x86_sse2()) {
/* If SSE2ized smix works, use it. */
if (!testsmix(crypto_scrypt_smix_sse2)) {
smix_func = crypto_scrypt_smix_sse2;
return;
}
warn0("Disabling broken SSE2 scrypt support - please report bug!");
}
#endif
/* If generic smix works, use it. */
if (!testsmix(crypto_scrypt_smix)) {
smix_func = crypto_scrypt_smix;
return;
}
warn0("Generic scrypt code is broken - please report bug!");
/* If we get here, something really bad happened. */
abort();
}
/**
* crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
* p, buflen) and write the result into buf. The parameters r, p, and buflen
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
* must be a power of 2 greater than 1.
*
* Return 0 on success; or -1 on error.
*/
int
crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t _r, uint32_t _p,
uint8_t * buf, size_t buflen)
{
if (smix_func == NULL)
selectsmix();
return (_crypto_scrypt(passwd, passwdlen, salt, saltlen, N, _r, _p,
buf, buflen, smix_func));
}
|